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In June 1696 Johann Bernoulli published as a challenge the following problem. 

“Given two points A and B in a vertical plane, what is the curve traced out by a point 
acted on only by gravity, which starts at A and reaches B in the shortest time.”  

 
Let v represent the bead’s speed and chose point A’s coordinates as (x, y) = (0, L) and point B’s 
coordinates as (a, 0). Energy conservation requires that the bead’s speed is given by 
 

( )yLg −= 2v  .  
 
The time of travel between Point A and Point B is given by the following integral. 
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To simplify the analysis the following “normalized” or scaled variables are introduced. 
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Here 
2L

g
is the time to drop from rest through a vertical distance L and r is the ratio of the net 

horizontal displacement to the net vertical displacement.  
 

 
The solution of the Brachistochrone problem is an inverted cycloid with the bead released from 
the top left cusp. The constant k is the diameter of the “generating circle” of the cycloid. 
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The bottom of the cycloid must extend below Y = 0, so the minimum value of k is 1. The 
boundary conditions determine the value of k and the maximum value of theta,θ0 . 
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These conditions lead to the following two equations: 
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The cycloid only has one free parameter. Both k andθ0 are functions of r. Thus, r is the 
fundamental independent variable of the Brachistochrone. 
  
The normalized least time is given by 
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Theorem: If 0
2

< <r
π

, θ0  is in the interval ( )0,  π , if 
2

π>r  ,θ0  is in the interval ( )π π,  2 , 

and if r =
π
2

, θ π0 = .  

 

The constant k is given in terms of θ0 by 
0cos1

2

θ−
=k . From the results stated in the Theorem 

this can be inverted as follows: 
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This result gives two different formulas for r in terms of k. This of course means that r is not a 
function of k . 
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A parametric plot of this relation is shown in Figure 1.  
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An interesting feature of the minimizing cycloid occurs when 
2

π>r  and θ0  is in ( )π π,  2 . The  

bottom of the cycloid at 0θπθ <=  is part of the minimizing trajectory. Thus, the curve “over 

shoots” y = 0 and approaches the terminal point of the trajectory from below.  

This result is really not surprising. As r increases, the horizontal component of the trajectory 
dominates the curve. In order to travel this horizontal distance as quickly as possible the vertical 

drop distance increases to “build up speed”. A typical solution with 
2

π>r is shown in Figure 2.  

Figure 1 

 

Figure 2 
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I. Explicit Expansions as a Function of  r for the Exact Cycloid Solution: 
 
Asymptotic Expansions for Large r 
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It is reasonable therefore to assume the following expansion for k: 
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Note that in physical units the time of descent scales as 
2 2L

g

a

L g
aπ π  = . It will be seen 

in the next section that time of descent increasing like the square root of a is a feature common to 

a variety of minimum time curves. However, the factor of π  associated with the minimizing 
cycloid is the smallest possible coefficient.  

Asymptotic Expansions for Small r 
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As r approaches zero no other path than the minimizing cycloid has an expansion in r for the 
time of descent smaller than  
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These approximations for k and 0θ allow for a very accurate graph of the minimizing cycloid for 

any value of r. In fact, they have been used to generate “computer animations” that display the 

shape of minimizing cycloid “dynamically” as r changes. 
 
 
II. Variational Solutions: 
 
A Piece-Wise Linear Trajectory 
 
Consider the path from (0, L) to (a, 0) made up of the following three line segments: 

(1) (0, L) to (b, -D) 
(2) (b, -D) to (b + h, -D) 
(3) (b + h, -D) to (a, 0) . 

The variables b and h are constrained to be non-negative numbers which satisfy the inequality 
that ahb ≤+ . The variable D must be greater than  –L . The trajectory is illustrated in Figure 3.  
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Let T1 be the time on segment 1, T2 the time on segment 2 and T3 be the time on segment 3. 
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Figure 3 
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Let T represent the total time along the path, i.e., T = T1 + T2 + T3 . To simplify the analysis 
introduce the following “normalized” or scaled variables. 
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As in the analysis of the minimizing cycloid,τ  is just the total time measured in units of the time 
required for a “vertical” fall from rest through a displacement of L. The total vertical 
displacement along the first segment of the path is given by 2γLDL =+ . Both ΕΒ  and are non-

negative and must satisfy the constraint r≤Ε+Β . In terms of these scaled variables the total time 
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Straight Line Trajectory (No Free Parameters) 
 
When r=Β and )0( 1 == Dγ , the path is the straight line from (0, L) to (a, 0) .This path has a 

total time of ( ) 21,0,,1 rrr +=τ . For small r this can be expanded as 
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For large r the time on the straight-line path grows nearly linearly in r in contrast to the square 
root growth of the minimizing path. 

 
An “L” Trajectory (One Free Parameter) 
 

Figure 4 
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The scaled time along this path is given by  
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It is interesting to note that 0
4
3

< <r  the minimum total time of the “L” trajectory is actually 

longer than the time along the straight-line path! For large r it does much better, having a square 

root dependence on r just like the cycloid solution to the Brachistochrone. Of course 2, the 

coefficient on the square root of r, is larger than π = 17724538509055. ... . 
 
“Left Ramp” Trajectory (Two Free Parameters) 
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Figure 5 
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For large r the numerical value of the coefficient on the square root of r for the total time is 
1.931851652578… . This is better than the “2” for the “L” Trajectory but of course greater than 

the result for the minimizing cycloid, π = 17724538509055. ... . 
 
A Parabolic Trajectory (One Free Parameter) 
 
Given the long history of the Brachistochrone and the even longer history of the conic sections 
the least-time parabolic trajectory is an inherently interesting problem. An arbitrary parabola in 
the plane has four degrees of freedom: the coordinates of the focus and the placement of the 
directrix. Thus, determining the least-time parabola between two points means solving a problem 
with two free parameters. A simpler, but still challenging, problem with a single parameter results 
if the directrix is constrained to be parallel to the x axis. For convenience, the solution of this 
problem will still be called the minimizing parabola, while the designation, least-time parabola 
will be reserved for the solution of the problem with a variable orientation of the directrix. 
Obviously, the general parabolic path includes the zero-slope directrix as a special case. Hence 
the time of descent along the least-time parabola will always be shorter than that along the 
minimizing parabola. 
 
Consider the path of “quickest descent” from (0, L) to (a, 0) when y is a quadratic function of x. 
Since the given two points must lie on the parabola, there is only one degree of freedom 
available. This can be taken as the coefficient on x2, i.e., 
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For fixed r the minimizing time is found by determining the value of m that minimizes H(m, r).   
 

The value of m, m0 , that minimizes H(m, r) has the following approximate form based on using a 
fitting polynomial and numerical solutions obtained via Newton’s method.  
 

For small r, ( )2 4 6 8+,min 1 0.414956792 0.146487517 0.078569364 O   .p r r r rτ + − +=    

 
This compares well with the absolute minimum time of the cycloid solution where the coefficient 

on r2 is 0.375  and it certainly “beats” the straight line trajectory where the coefficient is 0.5 . 
 

For large r, ( )1
,min

0.52166717071928
1.83421643979696 1.19409691940063p Or r

r
τ −= − + +  

 
The coefficient of the first term of this result when compared to coefficient of the first term of the 
large r asymptotic time of the minimizing cycloid is too big by 3.48%. However, this is closer 
than the corresponding result for the “two ramp” trajectory, which is too big by 5.00%.  

 
For large r the minimizing parabola descends about 20% lower than the absolute minimum curve. 
One could imagine that in the parabola’s “race” with the minimizing cycloid it lowers the 
minimum so as to pick up more speed. But it also picks up more arc length, so in the end it still 
loses, but not by much. Thus, a parabola can closely approximate the minimum time of descent 
without being able to closely match the shape of the minimizing cycloid. This appreciable 
difference in appearance between the two minimizing curves is illustrated in Figure 6 where 
 r = 6.  
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Figure 6 

 
 
,  

A comparison of the total time of travel between the different variational methods and the 
minimizing cycloid is displayed in Figure 7. The notation is that T(1, r, 0, r) is the straight line 
trajectory, T(gamma1(r), 0, 0, r) is the “L” trajectory and T(gamma2(r), 0, 0, r) is the “Left 
Ramp” trajectory. For the minimizing parabola the discrete points represent the approximate 

solutions obtained by Newton’s method and for r > 3.5, the large r asymptotic expression is also 
plotted. 
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Figure 7 
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