Family of curves

Cartesian coordinates

In an $x-y$ Cartesian coordinate system, the most general form of equation of a siluroid is:
[1]

$$
\left(x^{2}+y^{2}\right)^{2}-4 x n\left(x^{2}-y^{2}\right)=0
$$

where n is a natural integer, that is $n \in \mathbb{N}$.

Polar coordinates

Analogously, the most general form of equation of a siluroid in Polar coordinates is:
[2]

$$
\rho=4 n \cos (\theta) \cos (2 \theta)
$$

Parametric formulas

The parametric equations of a siluroid are:
[1a]

$$
\left\{\begin{array}{l}
x=\frac{2 n+t}{2 n} t \\
y= \pm \frac{\sqrt{4 n^{2}-t^{2}}}{2 n} t
\end{array} \quad \text { where } t \in[-2 n, 2 n]\right.
$$

Mother curve

If $n=1$ we obtain the so called mother curve. Note that the mother curve is a particular case of a more general curve called folium. In particular it is a trifolium where $a=1 / 2$

Cartesian coordinates

In Cartesian coordinates, the mother curve is:
[3]

$$
\left(x^{2}+y^{2}\right)^{2}-4 x\left(x^{2}-y^{2}\right)=0
$$

Polar coordinates

In Polar coordinates, the mother curve is:
[4]

$$
\rho=4 \cos (\theta) \cos (2 \theta)
$$

Solutions

The solutions for the variable y are:
[5]

$$
y= \pm \sqrt{-x^{2} \pm 2 \sqrt{x^{2}(2 x+1)}-2 x}
$$

Parametric formulas

The parametric equations of the mother curve are:
[3a]

$$
\left\{\begin{array}{l}
x=\frac{2+t}{2} t \\
y= \pm \frac{\sqrt{4-t^{2}}}{2} t
\end{array} \quad \text { where } t \in[-2,2]\right.
$$

Calculus

Integrals

Since the area of a curve in polar coordinates $\rho(\theta)$ between the angles α and β is [11]

$$
A=\frac{1}{2} \int_{\alpha}^{\beta} \rho^{2} \mathrm{~d} \theta
$$

it is possible to demonstrate that the area of the siluroid between two generic angles is [12]

$$
A=\left.n^{2}\left(2 \theta+\sin (4 \theta)+2 \sin (2 \theta)-\frac{2}{3} \sin ^{3}(2 \theta)\right)\right|_{\alpha} ^{\beta}
$$

Total area

The total area of the siluroid is $2 \pi n^{2}$

Main lobe

The area of the main lobe is
[13]

$$
\left(\pi+\frac{8}{3}\right) n^{2}
$$

Secondary lobe

The area of a secondary lobe is
[14]

$$
\frac{1}{2}\left(\pi-\frac{8}{3}\right) n^{2}
$$

Derivatives

Let us use the equation in polar coordinates to calculate the derivatives of a siluroid. The first derivative is
[15]

$$
\dot{\rho}=-4 n \sin (\theta)(3 \cos (2 \theta)+2)
$$

whereas the second derivative is
[16]

$$
\ddot{\rho}=-4 n \cos (\theta)(9 \cos (2 \theta)-4)
$$

