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Introduction 

Many spirals are based on the simple circle, although modulated by a variable radius. We have 
generalized the concept by allowing the circle to be replaced by any closed curve that is 
topologically equivalent to it. In this note we focus on the superconics for the reasons that they 
are at once abundant, analytical, and aesthetically pleasing. We also demonstrate how it can be 
applied to random closed forms. 

The spirals of interest are of the general form . A partial list of these spirals is given 

in the table below: 

Spiral  Remarks 
Logarithmic  b = flair coefficient 

Archimedean 
(generalized)  

m = 1, Archimedes 
m = 2, Fermat 

m = -1, Hyperbolic 
m = -2, Lituus 

Parabolic   
Cochleoid   
Poinsot   
 

Genesis of the superspiral    (1) 

The idea began when someone on line was seeking to create a 3D spiral with a racetrack 
planiform. Our first thought was that the circle readily transforms to an ellipse, for example 

  

Not quite a racetrack, but on the right track. The rest cascades in a hurry, as 

  

This is subject to the provisions that the random form is closed and has no crossing lines.  This 
also brought to mind Euler’s famous derivation,  

 

connecting the five most famous symbols in mathematics. 
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In the present paper we’re concerned primarily with the superconics because the mapping is well 
known and analytic. More information on superconics can be found in Waldman (2016) and 
submitted for publication by Waldman, Chyau, & Gray (2017). Thus, we take 

  

where  is a parametric variable (not to be confused with the polar or tangential 

angles). At the same time, we note that the parameters a and b are superfluous insofar as they 
merely stretch the axes and can be affected after the fact. 

Figure 1 shows a comparison of two ‘normal’ spirals (Archimedes above and Fermat below) and 
a superconics interpretation to the right. Here we have plotted z and –z to create a double spiral 
in each case. 

Figure 2 similarly shows a comparison of two ‘normal’ spirals (logarithmic above and Cochleoid 
below) and a superconics interpretation to the right. Here we have plotted z and z* to create an 
osculating spiral in each case. You can also use z and -z* to create alternative osculating spirals. 

Figure 3 (upper) shows a random blob on the left and an Archimedes spiral interpretation on the 
right. 

Spirals that do not conform to the circular model can also be similarly transformed. Figure 3 
(lower) shows a Cornu (or Euler) spiral on the left and superconics interpretation on the right. 
That interpretation was created as follows, 

  

Then we can merely map   In this case, however, we can have no 
expectation that the final result will necessarily look anything like the superconics in question 
insofar as  is not a uniform distribution. 

The animations associated with this manuscript show some additional examples of these spirals. 
The first one (yellow curves) shows an Archimedean spiral with various superconics mappings. 
The second one (cyan curves) shows a single superconics mapping with a variety of generalized 
Archimedean spirals (i.e., variable m). Finally, the third one (green curves) shows the Cornu 
spiral taken through a variety of superconics transforms Keep in mind that the circle is itself a 
superconics curve, so the ‘normal’ spiral is a member of the superconics set. 
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The Matlab computer code in the Appendix will allow you to create your own generalized 
Archimedean spirals and superconics mappings. Of course, the code may be modified to 
accommodate any spiral and mapping you would like. The ‘elliptic’ parameters a and b are also 
available in the code. 

 

Figure 1. Comparison of ‘normal’ and transformed spirals: Archimedes (above), Fermat (below). 

 

Figure 2. Comparison of ‘normal’ and transformed spirals: logarithmic (above), cochleoid (below). 
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Figure 3. Comparison of ‘normal’ and transformed spirals: random blob (above), Cornu/Euler (below). 
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Appendix: Computer Code 

function Superspirals4NCB 
% create superconics mappings generalized Archimedean spirals 
% Copyright July, 2017, Cye H. Waldman 
ZsuperE=@(u,p,q,a,b) 
a*abs(cos(u).^2).^(1/q).*sign(cos(u))+i*b*abs(sin(u).^2).^p.*sign(sin(u)); 
  
u=2*pi*linspace(0,3.5,4001)'; 
d=1; 
m=2*rand; % m=1 --> Archimedes, m=1/2 --> Fermat; try others as well 
r=d*u.^(1/m)/2/pi; 
  
% true spiral 
p=1/2;q=2;a=1;b=1; 
z1=r.*ZsuperE(u,p,q,a,b); 
  
% superconics mapping 
p=3*rand;q=3*rand;a=1;b=1; 
z2=r.*ZsuperE(u,p,q,a,b); 
  
figure 
subplot(1,2,1) 
plot([z1 -z1],'b','LineWidth',1) 
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title(['m = ' num2str(m)]) 
axis('equal','tight','off') 
subplot(1,2,2) 
plot([z2 -z2],'b','LineWidth',1) 
title(['[p,q] = [' num2str([p q]) ']']) 
axis('equal','tight','off') 
  
return 
 


