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Abstract 
 
Rhombic, or rhombus substitution, tiling is an outgrowth of triangle substitution tiling, but has not 
been identified as such to our knowledge. Many instances of such tilings can be found in the 
literature, but appear to be ad hoc tilings, without recognition that they are, at the core, the same 
tiling. With this new paradigm, we can recreate these tilings and infinitely many others with a 
single algorithm. We demonstrate how to create radial and spiral tilings with the Goldberg shift.  
 
Introduction 
 
Inasmuch as the words rhombus and substitution appear frequently in discussions of tiling, we will 
first clarify what we mean by rhombus substitution tiling. 
 
It is well known that we can create radial and spiral tilings by starting with a deformed isosceles 
triangle. This has been described by Gardner (2001) and in greater detail by Grünbaum and 
Shephard (1986). Both attribute the idea to Goldberg (1955), who pointed out that if we take a 
radial tiling of isosceles triangles and slice it in half, the two half-planes can be shifted by one or 
more tiles to make a spiral form. More recently, Waldman (2014) has formalized the procedure 
and made a Matlab code freely available. 
 
A rhombus tile is two triangle tiles that are concatenated at the base. Symmetric and antisymmetric 
concatenations are both possible, but only the latter will tessellate radially. The parent triangles 
may be symmetric or antisymmetric tiles (this refers to the congruent legs). Some examples are 
shown in Table 1. 
 
Examples of rhombic Lightning and Lord & Wilson tilings can be found in Grünbaum and 
Shephard (p. 516). The latter can also be found in Dutch (1999) and Roskes (2014), along with 
straight rhombus tilings. The sigma tile was first shown by Waldman (2014) and is a prime 
example of rhombus tiling, as shown in Figure 1. As far as we know, these are all ad hoc tilings. 
With the present model these tilings and many others can be readily created. Moreover, most of 
these tiles are deformable (optional shapes for the same vertex angle) or parameterized (optional 
shapes for variable vertex angles) and these variations are available with little or no extra effort. 
 
Finally, we present a complete Matlab program for rhombus substitution tiling with several built-in 
tiles. This program can be readily modified by the user in order to modify or add tiles. 
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Tile ‘Triangle’ Symmetric 
‘rhombus’ 

Antisymmetric 
‘rhombus’ 

Lightning 

   

Lord 
& 

Wilson 

   

Sigma 

   
Table 1: Some examples of rhombic tiles. 

 

 
Figure 1: Rhombic tiling with Sigma tile. 

Technical Discussion 
 
RHOMBUS SUBSTITUTION TILING 

X 

X 

X  
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Rhombus substitution tiling derives from the idea of Goldberg (1955), who pointed out that if we 
take a radial tiling of isosceles triangles and slice it in half, the two half-planes can be shifted by 
one or more tiles to make a spiral form. Here, however, we are using two isosceles triangles 
concatenated at the base. The general idea is shown in Figure 2. Moreover, the rhombuses can be 
distorted in infinite ways by replacing the legs with congruent lines, such as those in Table 1. In 
rhombus tiling the Goldberg shift is defined by two legs of the rhombus, that is, one-half the 
perimeter of the tile, or  , where  is the vertex angle. As seen in Figure 2, the shift 
can take integer and half-integer values. And, of course, the shift can be positive or negative. 

 
Figure 2: Creating spirals from radial rhombic tilings (shifts of 0, ½, and 1). 

 
We developed a simple and (almost) foolproof method for creating these tilings that we call R 
tiling. R is simply the tile resting on its vertex in a vertical orientation. All rhombic tiles have four 
points in common: the four corners of the parent rhombus , where, 

 is the height of the parent rhombus. 
Radial tiling can be constructed by corona or by sector. The latter is simpler and is adopted here. 
Referring to Figure 3, we see that the core consists of a single R-tile for each sector. Within the 
sector, the first corona consists of two tiles, touching at the waist, the second corona has three tiles, 
also touching at the waist, and so on. In all cases, the waist of the rhombus is unity. The nth corona 
consists of n+1 R-tiles. Thus, for the nth corona, 
   (1) 

The image part with relationship ID rId19 was not found in the file.
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Figure 3: Rhombic tiling. 

 
To set up for spiral tiling, it is convenient to rotate the sector Z counterclockwise so that it rests on 
the negative x-axis. Assuming the origin is at the vertex of the sector, we can say 
   (2) 
Radial tiling is then created by rotating this Z though all the sectors. Spirals are created as follows: 
   (3) 

where  and  are the sectors in the top and bottom halves of the plane, respectively, g is the 
number of the Goldberg shift, and s is half-perimeter of the reference rhombus, as defined above. 
This is amazingly simple, but there is one caveat that must be noted. First, the vertex angle of the 
reference triangles must be mod 360 and the number of sectors must be even. Or, let’s just say that 
the vertex angle must be mod 180. Second, while the ‘rhombus’ itself is antisymmetric, there can 
be a problem tessellating radially because the coronas overlap. Specifically, if the parent ‘triangle,’ 
or one leg of the rhombus, is symmetric, then odd-numbered coronas are the negative conjugates 
of the values given by Eq. (1), i.e. . That’s all. 
 
 
SOME SAMPLE TILES 
Figure 4 shows the nine rhombus substitution tiles that are included with the enclosed program. All 
tiles nominally have a waist of unity; here they have been normalized to a unit height. The 
Voderberg tile is conspicuously absent from this collection. Those flexed feet seem to preclude 
tessellation in the rhombic mode. We leave this enigma as an exercise for the reader. Nevertheless, 
the tile in included with the enclosed program for your amusement. 
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Figure 4: Built-in tiles for the enclosed rhombus substitution tiling program. 

Table 2 shows the properties of these tiles. The ‘Generating tile’ is the reference ‘triangle’, i.e., the 
parent of the rhombic tile; ‘Description’ is just that, and ‘Figure’ refers to its position in Figure 4. 
Now, the columns ‘Deformable or free parameter’ is a user-selected value to customize the tile. 
‘Range’ is the recommended ranges of that parameter. The Lightning and Sigma tiles permit a 
continuous variation in the tile shapes and thus allow animated tilings. These parameters are used 
in the program input. 

Generating tile Description Figure Deformable 
or free parameter Range Asymmetry 



Waldman-Rhombus Substitution Tiling June 2015 

6 

Triangle Parent rhombus tile (a) , vertex angle mod 180 TRUE 

Lightning Bent heptagon (b) l, a length l �1.75 TRUE 

Sigma Bent enneagon (c) l, a length l ~ 0.72-2.65 FALSE 

Versatile Variable sided non-
convex odd-gon (d) K, no. of sides on one limb 

of the ‘rhombus’  FALSE 

Reflexed odd polygon Variable sided non-
convex odd-gon (e) K, no. of sides on one limb 

of the ‘rhombus’  FALSE 

Random 
antisymmetric 

A random anit-sym 
icosihenagon (f) , vertex angle mod 180 TRUE 

Random symmetric A random symmetric 
icosihenagon (g) , vertex angle mod 180 FALSE 

Cornu spiral 1-2 spiral segments (h) Number of spiral segments 1 or not 1 TRUE 

Lord & Wilson Variable vertex non-
convex pentagon (i) , vertex angle mod 180 FALSE 

Table 2: Properties of the built-in tiles. 
 
The differentiation between antisymmetric and symmetric tiles (these refer to the generating tile) is 
that they tessellate differently, and this will impact the radial tiling. In plain English, antisymmetric 
tiles tessellate with themselves and symmetric tiles tessellate with their mirror (conjugate) selves. 
The procedure for creating a ‘rhombus’ tile from a ‘triangle’ tile is quite simple. First, let’s 
designate the triangle tile as V, with the vertex at the origin and a flat top. Now, the first step is to 
place an antisymmetric tile on the flat top. Thus we desinate , where h is the height 
of the rhombus, . Now, since the ‘triangle’ must have  sides, the ‘rhombus’ 
tile is given very simply by the range of points from V and A shown here: 
   (4) 
Tile coordinates are ordered counterclockwise starting from the vertex. 
Figure 5 (a) shows a typical spiral, in this case, a lightning tile with two coronas and a shift of 
minus one-half. Now, the really cool thing about the program is that it doesn’t care if R is input as 
concatenated rhombus substitution or as a pair of tessellated tiles, e.g., . In this case, you 
recover a triangle substitution, as seen in Figure 5 (b). The striking stegosaurus fins are the residual 
tiles from the ‘rhombus.’ They can be optionally omitted in the program to fully reproduce a true 
triangle substitution tiling, as seen in Figure 5 (c), 
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Figure 5: Examples of rhombus substitution tiling program output: (a) ‘rhombus’ configuration; 
(b) ‘triangle’ configuration (includes residual spikes); (c) ‘triangle’ configuration with optional 

removal of spikes (same as triangle substitution tiling). 
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ABOUT THE PROGRAM 
A complete Matlab program, RhombicTiling4NCB.m is available in the Appendix. The input 
and output variables are described here. All calculations are carried out in function 
RhombicRadialSpiral4NCB by the radial sector method described above. The program plots 
the results of the specified tiling. It can be easily modified to alter or add to the built-in tiles. 
The program is run from the command line as follows: 
Z=RhombicTiling4NCB(tile,param,coronas,shift,rhombus,trim); 
The output, Z is a complex matrix of tiles. The columns are the tiles and the rows are their 
complex coordinates. The input parameters are described in Table 3. 

Parameter Description Remarks 
tile 

 
 
 
 
 

Built-in tiles: 
'Triangle','Lightning', 
'Sigma','Versatile', 
'ReflexedPolygon', 
'Random','RandomSym', 
'Cornu','Lord&Wilson', 
'Voderberg' (exptl) 

A string parameter; case 
insensitive 
 
Refer to Table 2 

param This is the parameter for the 
deformable tiles and the vertex 
angle for the triangle and random 
tiles 

All angles are input in degrees 
All tiles require a parameter 
 
Refer to Table 2 

coronas The number of annuli about the 
central core tiles 

 

shift The number of tiles to shift in 
order to create spirals by 
Goldberg’s method 

Positive or negative integers or 
half-integers; normally  
|shift| ≤ coronas 
 
Refer to Table 2 

rhombic Indicates whether to create 
rhombic ( = 1)  or  
triangle (not 1) tiling 

 

trim Indicates whether to trim ( =1) or 
not (not 1) to trim the stegosaurus 
fins (spikes) 

Refer to Figure 5 and the 
preceding paragraph 

Table 3: Program input parameters. 
For example, the following code will produce the rhombic sigma spiral tiling of Figure 1 in 0.16 
seconds: 
tile=sigma; 
param=1; 
coronas=2; 
shift=-1/2; 
rhombic=1; 
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trim=0; 
Z=RhombicTiling4NCB(tile,param,coronas,shift,rhombic,trim); 
The program contains a complete set Versatiles [Grünbaum and Shephard (1979)] and reflexed 
odd-polygons; both are expressed parametrically in terms of the number of segments on each leg, 
K and the total number of sides is 2K+1. These are symmetric tiles. 
The nominal vertex angle of the Cornu tiles is 20º; this can be changed in the program. 
Voderberg tiling works properly only for radial tiling, i.e., rhombic=0, and not otherwise.  
A gallery of randomly created images is shown below. The program for generating these, as well 
as testing the program, is embedded in the header section of the program. The title in each figure 
gives the name of the tile followed by the numerical input parameters: param,coronas,shift. 
Caution is advised when working with the random tiles; they are random and the legs may overlap. 
There are two animations associated with this paper [Waldman (2015), this paper]. The first shows 
the buildup of a sector, then radial and spiral tilings. The second shows how a single parent tile can 
lead to three distinct tilings. 
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Summary 
 
We have developed a new paradigm for radial and spiral tiling as an extension of triangle 
substitution tiling [Waldman 2014)]. We called it rhombic, or rhombus substitution, tiling because 
the prototiles are concatenated triangle substitution tiles. In so doing, we have brought under one 
roof, a collection of spirals that were previously thought to be ad hoc tilings. Moreover, we have 
extended the range of coronas and spirals (through the Goldberg shift) indefinitely. In addition, we 
have introduced a number of tiles that are compatible with rhombic tiling. Users can create new 
compatible tiles. The program is the engine to turn those into radial and spiral tilings. 
 
We go a step further. Every tile built into the program is continuously or discretely variable and 
we’ve included two randomly generated tiles to boot. And finally, the program will also produce 
traditional and enhanced triangle substitution tilings. To say that there are an infinite number of 
tilings possible with this program is an understatement. 
 
Now, we have nothing against ad hoc tiling, per se. Figure 1 started out that way, with a program 
that was described as ‘too ugly for public consumption.’ The question is, ‘what are you going to do 
after that?’ And that is what led us to where we are today. 
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Gallery 

 
Figure 6: Lightning rhombic spiral tiling. 

 
Figure 7: Sigma rhombic spiral tiling. 
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Figure 8: Versatile rhombic spiral tiling. 

 
Figure 9: Reflexed odd-polygon rhombic spiral tiling. 
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Figure 10: Random antisymmetric icosihenagon rhombic spiral tiling. 

 
Figure 11: Random symmetric icosihenagon rhombic spiral tiling. 



Waldman-Rhombus Substitution Tiling June 2015 

14 

 
Figure 12: Cornu rhombic spiral tiling. 

 
Figure 13: Lord & Wilson rhombic spiral tiling. 
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Appendix: Rhombus Substitution Tiling Program 
function Z=RhombicTiling4NCB(tile,param,coronas,shift,rhombic,trim) 
% this program was created for the National Curve Bank to accompany the 
% submission "Rhombus Substitution Tiling," 
% see http://curvebank.calstatela.edu/waldman11/waldman11.htm for details 
%-------------------------------------------- 
% HERE IS A SHORT PROGRAM FOR RANDOM TESTING 
% function TestRhombicTiling 
% % title says it all; average execution time <2 seconds 
% close all 
% mod360=[12 15 18 30 36 45 60]'; 
% tiles={'Triangle','Lightning','Sigma','Versatile','ReflexedPolygon',... 
%     'Random','RandomSym','Cornu','Lord&Wilson','Voderberg'}; 
%  
% for k=1:length(tiles) 
%     params=[mod360(floor(1+7*rand)),1.75*rand,0.72+(2.65-0.72)*rand,... 
%         floor(1+9*rand),floor(1+12*rand),mod360(floor(1+3*rand)),... 
%         mod360(floor(1+3*rand)),round(rand),mod360(floor(1+3*rand)),... 
%         111+(153-111)*rand,1]; 
%     coronas=floor(1+6*rand); 
%     shift=(-6+floor(12*rand))/2; 
%     rhombic=1; 
%     trim=0; 
%     Z=RhombicTiling4NCB(tiles{k},... 
%         params(k),coronas,shift,rhombic,trim); 
%     title([tiles{k} ': (P,C,S) = (' num2str(params(k)) ','...  
%         num2str(coronas) ',' num2str(shift) ')']) 
%     assignin('caller',['Z' num2str(k)],Z) 
% end 
%  
% return 
%-------------------------------------------- 
% Copyright 2014, Cye H. Waldman 
% Let me know how this works out for you at cye@att.net 
  
tile=lower(tile); 
switch tile 
 
    case 'triangle' 
        alef=param*pi/180; 
        x=1; 
        h=1/(2*sin(alef/2)); 
        S=[x;h;h]; 
        phi=[0;pi/2+alef/2;3*pi/2-alef/2]; 
        z=cumsum(S.*exp(i*phi)); 
        z=[0;z]; 
        V=conj(z)-1/2+i*max(abs(imag(z))); 
        A=z; 
        sectors=2*pi/alef; 
        if mod(sectors,2)>0 
            error('Need an even integer number of sectors for spirals') 
        end 
        antisym=1; 
        V=[V(3:4);V(2:3)]; 
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    case 'lightning' 
        alef=pi/12; 
        sectors=2*pi/alef; 
        s=1/(2*sin(alef/2)); 
        l=1; 
        theta=pi/3; 
        z=l*exp(i*theta); 
        z=[0;z]; 
        z=[z;z-z(2)+i*s]; 
        z=[z;flipud(z*exp(i*alef))]; 
        V=z*exp(-i*alef/2); 
        A=(-z+i*s)*exp(-i*alef/2); 
        antisym=1; 
         
    case 'sigma' 
        alef=pi/12; 
        sectors=2*pi/alef; 
        s=1/(2*sin(alef/2)); 
        lratio=param; 
        f=@(x) cos(x)./cos(pi/2+x)+lratio; 
        theta=fzero(f,.5); 
        phi=acos(-cos(theta)/2); 
        l1=s/2*sin(phi-pi/2)/sin(pi-phi+theta); 
        l2=2*l1; 
        z=[0;l1*exp(i*theta);l1*exp(i*theta)+l2*exp(i*phi)]; 
        z=[z;flipud(conj(z(1:end-1))+i*s)]; 
        z=z*exp(-i*alef/2); 
        z=[z;flipud(z*exp(i*alef))]; 
        V=z; 
        A=conj(z)+i*s*exp(-i*alef/2); 
        V=-conj(V); 
        A=-conj(A)+1; 
        antisym=0; 
         
    case 'versatile' 
        K=param; 
        v=Versatile(K); 
        v=-conj(v); 
        % figure;plot(V);axis equal 
        % hold on;plot(v,'r') 
        V=v; 
        n=6*K; 
        alef=2*pi/n; 
        sectors=n; 
        antisym=0; 
         
    case 'reflexedpolygon' 
        K=param; 
        v=ReflexedPolygon(K); 
        v=-conj(v); 
        V=v; 
        n=2*K+1; 
        alef=pi/n; 
        sectors=2*pi/alef; 
        antisym=0; 
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    case 'random' 
        antisym=1; 
        a=param; 
        alef=a*pi/180; 
        h=1/(2*tan(alef/2)); 
        s=1/(2*sin(alef/2)); 
        % let's make a 5-legged line, 
        y=linspace(0,s/2,6)'; 
        x=s/3*(-.5+1*rand(4,1)); 
        % get the correct endpoints 
        x=[0;x;0]; 
        z1=complex(x,y); 
        if antisym 
            z=[flipud(-z1);z1(2:end)]; 
        else 
            z=[flipud(conj(z1));z1(2:end)];    % for symmteric case 
        end 
        z=z-z(1); 
        % make the tile 
        z=[z*exp(-i*alef/2);flipud(z*exp(i*alef/2))]; 
        V=z; 
        sectors=2*pi/alef; 
        if mod(sectors,2)>0 
            error('Need an even integer number of sectors for spirals') 
        end 
         
    case 'randomsym' 
        antisym=0; 
        a=param; 
        alef=a*pi/180; 
        h=1/(2*tan(alef/2)); 
        s=1/(2*sin(alef/2)); 
        % let's make a 5-legged line, 
        y=linspace(0,s/2,6)'; 
        x=s/3*(-.5+1*rand(4,1)); 
        % get the correct endpoints 
        x=[0;x;0]; 
        z1=complex(x,y); 
        if antisym 
            z=[flipud(-z1);z1(2:end)]; 
        else 
            z=[flipud(conj(z1));z1(2:end)];    % for symmteric case 
        end 
        z=z-z(1); 
        % make the tile 
        z=[z*exp(-i*alef/2);flipud(z*exp(i*alef/2))]; 
        V=z; 
        if antisym 
            A=-V+1/2+i*h; 
        else 
            A=conj(V)+1/2+i*h;    % for symmteric case 
        end 
        sectors=2*pi/alef; 
        if mod(sectors,2)>0 
            error('Need an even integer number of sectors for spirals') 
        end 
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    case 'cornu' 
        integrand=inline('exp(i*(a(1)+s.*(a(2)+s.*(a(3)))))','s','a'); 
        singlet=param; 
        alef=20*pi/180; 
        smax=.731; 
        npts=101; 
        s=linspace(-smax,smax,npts)'; 
        dels=s(2)-s(1); 
        a=[0 0 3]; % classic Cornu spiral --> pi/3 
        z=cumtrapz(integrand(s,a))*dels; 
        theta=angle(z(end)-z(1)); 
        z1=z*exp(i*(pi/2-theta)); 
        if singlet 
            z3=flipud(z1*exp(i*alef)); 
            l=abs(z(end)-z(1)); 
            x=2*l*sin(alef/2); 
            z2=flipud((z-z(end))*x/l*exp(i*0*alef/2)); 
            theta1=angle(z3(1)-z1(end)); 
            theta2=angle(z2(end)-z1(1)); 
            z2=(z2-z1(1))*exp(i*(theta1-theta2))+l*i; 
            z=[z1;z2(2:end);z3(2:end)]; 
            z=z*exp(-i*alef/2); 
            % and finally, slace to unit top 
            z=z/x; 
            v=-z+i*2*imag(z(101)); 
            w=[z(1:101);v(202:end);v(2:101);z(202:end)]; 
            h=imag(w(101)); 
        else 
            z1=[z1;z1(2:end)+i*max(abs(z1))]; 
            z3=flipud(z1*exp(i*alef)); 
            l=abs(z1(end)-z1(1)); 
            x=4*l*sin(alef/2); 
            z2=flipud((z-z(end))*x/l*exp(i*0*alef/2)); 
            theta1=angle(z3(1)-z1(end)); 
            theta2=angle(z2(end)-z1(1)); 
            z2=(z2-z1(1))*exp(i*(theta1-theta2))+l*i; 
            z=[z1;z2(2:end);z3(2:end)]; 
            z=z*exp(-i*alef/2); 
            % and finally, slace to unit top 
            z=2*z/x; 
            v=-z+i*2*imag(z(201)); 
            w=[z(1:201);v(302:end);v(2:201);z(302:end)]; 
            h=imag(w(201)); 
        end 
        sectors=2*pi/alef; 
        antisym=1; 
         
    case 'lord&wilson' 
        a=param; 
        alef=a*pi/180; 
        n=2*pi/alef; 
        theta=[a;90;180-a;270;a;90;180-a;270]*pi/180; 
        phi=cumsum(pi-theta); 
        z=cumsum(exp(i*phi)); 
        z=[0;z]; 
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        beth=angle(z(5)); 
        z=z*exp(i*(beth+alef)); 
        delx=real(z(3)-z(7)); 
        % PENTAGON OPTION 
        za=[z(1:3);z(7:9)]; 
        zb=[z(3:7);z(3)]; 
        % create a unit-top' tile 
        V=za/(abs(za(3)-za(4))); 
        sectors=2*pi/alef; 
        antisym=0; 
         
    case 'voderberg' 
        alef=12*pi/180; 
        b=param; 
        beth=b*pi/180; 
        L=2*sin((pi-alef)/2)/cos(beth-pi/2); 
        x=(csc(alef/2)/2-L*cos(pi-beth))/2-sin(alef/2); 
        S=[1;x;L;x;1;x;L;x;1]; 
        theta=[alef;(3*pi-alef)/2;(2*pi-beth);beth;(pi+alef)/2; 
          (pi-3*alef)/2;(2*pi-beth);beth;(pi+alef)/2]; 
        phi=cumsum(pi-theta); 
        z1=cumsum(S.*exp(i*phi)); 
        z1=[0;z1]; 
        z3=-z1+1/2+i*max(imag(z1)); 
        V=z1; 
        A=z3; 
        sectors=2*pi/alef; 
        antisym=1; 
         
    otherwise 
        error('Please select from the available tiles') 
end 
  
% avoid potential numerical problems 
if rem(sectors,1)>0 sectors=round(sectors); end; 
if strcmpi(tile,'cornu') 
    R=w; 
    V=z; 
    A=-V+i*2*h; 
else 
    K=length(V)/2-1; 
    h=max(imag(V)); 
    A=-V+i*2*h; 
    R=[V(1:K+1);A(K+3:end);A(2:K+1);V(K+3:end)]; 
    % for those who wish to look at the symmetric rhombic tile 
    B=-conj(A); 
    S=[V(1:K+1);B(K:-1:1);B(end-1:-1:K+2);V(K+3:end)]; 
end 
if ~rhombic R=[V A]; end; 
     
Z=RhombicRadialSpiral4NCB(R,sectors,coronas,shift,~antisym,rhombic,trim); 
figure;plot(Z,'b','LineWidth',1);axis equal;axis off;set(gcf,'Color','w') 
v=axis;axis(1.01*v) 
  
return 
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function Z=RhombicRadialSpiral4NCB(R,sectors,coronas,shift,issym,rhombic,trim) 
% this function produces a normal radial tiling of unit antisymmetrical  
% Rhombus D, with origin at the center, in sectors 
  
isodd=inline('rem(number,2) == 1;','number'); 
  
alef=2*pi/sectors; 
dely=1/(2*tan(alef/2));     % corona height 
  
z=R; 
for r=1:coronas 
    this=[]; 
    % calculate the rows 
    for k=1:r+1 
        this=[this R+k]; 
    end 
    this=this-1-r/2; 
    if issym && isodd(r); this=-conj(this); end 
    if ~rhombic 
        if r==coronas && trim; this=this(:,1:2:end); end 
    end 
    z=[z this+i*dely*r]; 
end 
  
% rotate to lie on negative x-axis 
z=z*exp(i*pi/2)*exp(-i*pi/sectors); 
  
Z=z; 
for k=1:sectors-1 
    Z=[Z z*exp(-i*k*alef)]; 
end 
% and finally the spiral if shift~=0 
if abs(shift)>0 
    Ztop=Z(:,1:end/2); 
    Zbot=Z(:,end/2+1:end); 
    if issym && isodd(abs(shift*2))>0; Zbot=-conj(Zbot); end 
    delx=1/(sin(alef/2)); 
    Z=[Ztop Zbot+shift*delx]; 
end 
  
return 
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function z=Versatile(K) 
% generates the Versatile on the basisof the number of segments on the 
% congruent legs, K >= 1 
  
% basic required angles and sides 
n=6*K; 
theta=2*pi/n; 
alef=pi/3; 
beth=2*pi*(n-3)/(3*n); 
phi=pi*(n-2)/n; 
  
% internal angles, ccw from vertex 
THETA=theta; 
for k=1:K-1 
    THETA=[THETA;2*pi-phi]; 
end 
THETA=[THETA;alef;beth]; 
for k=1:K-1 
    THETA=[THETA;phi]; 
end 
  
PHI=cumsum(pi-THETA); 
z=cumsum(exp(i*PHI)); 
z=[0;z]; 
upright=angle(z(K+2)-z(K+1))-pi; 
% upright=angle(z(end-1)-z(end)); 
z=z*exp(-i*upright); 
  
return 
  
  
function z=ReflexedPolygon(K) 
% generates the reflexed odd-gon on the basisof the number of segments on 
% the congruent legs, K >= 1 
  
% create an n-gon 
n=2*K+1; 
theta=(n-2)*pi/n*ones(n,1); 
phi=cumsum(pi-theta); 
z=cumsum(exp(i*phi)); 
z=[0;z]; 
  
zeta=angle(z(K+1)); 
w=z*exp(-i*zeta); 
w=[conj(w(1:K+1));w(K+2:end)]; 
z=w*exp(i*zeta)*exp(-i*phi(1)/2); 
  
return 
 
Please notify us at cye@att.net if there are any problems. And, by all means, let us know of any 
new tiles or tilings you develop for the program. 


