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Abstract 
 
Parquet, or parallelogram substitution, tiling is a new paradigm for radial and spiral tiling. It is 
inspired by, but decidedly different than rhombus substitution tiling. We describe the tiles that are 
suitable for this tiling and how to create them. We demonstrate how to produce radial and spiral 
tilings with the Goldberg shift.  
 
Introduction 
 
Most radial tilings are based on isosceles triangles and triangle substitution tiling [see, for example 
Grünbaum and Shephard (1986), Dutch (1999), and Waldman (2014)]. What these tilings have in 
common is that the prototiles are odd-numbered n-gons with two congruent legs that join at one 
end, thus the ‘triangle’ substitution. Waldman (2014) has recently formalized the procedure and 
made a Matlab code freely available. 
 
We have extended this concept in Waldman (2015a) to rhombus substitution tiling. ‘Rhombus’ 
tiles consist of two ‘triangle’ tiles concatenated at the base. These tiles have the property that the 
when aligned horizontally they touch only at the waist. Thus, when tiled periodically, rows and 
columns are both staggered. 
 
Now we wish to consider tiles that are fundamentally different. Specifically, tiles that are 
concatenated even n-gons. These tiles will stack both horizontally and vertically, rather than 
stagger. The question is whether they can be persuaded to tile radially and spirally.  
 
The tiles created by Gailiunas (2000) are the parent tiles for the concatenation. We review their 
properties and show that parqueting allows us to create a radial sector that can be rotated to fulfill a 
radial tiling. From there we can easily coax the spirals out with the Goldberg (1955) shift. 
 
A gallery of images demonstrates the broad class of tilings that accrue. 
 
Finally, we present a complete Matlab program for Parquet tiling. This program can be readily 
modified by an enterprising user who wishes to explore further. 
 
There are two animations associated with this paper [Waldman (2015b), this paper]. The first 
shows the buildup of a sector, then radial and spiral tilings. The second shows how a single parent 
tile can lead to three distinct tilings. 
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Technical Discussion 
 
GAILIUNAS AND PARQUETING TILES 

The present work is predicated on the Gailiunas tiles. It is highly recommended to read the paper 
by Gailiunas (2000), which is freely available online. Nevertheless, a brief review is given here. 

These tiles arise from overlapping n-gons as shown in Figure 1. Tiles start at the lower left and are 
created by cutting along any of the lines indicated. We can describe these tiles simply as a function 
of n and K, where n is the order of the regular polygon and K is one-half the order of the tile, that 
is, half the number of line segments.  

 

Figure 1: Creating Gailiunas tiles from overlapping regular n-gons. 
 

Figure 2 shows the complete set of Gailiunas tiles for 23n = . We chose an odd n-gon to 
underscore the fact that the maximum value of 2K n=     (floor). The vertex and base angles are 

designated as α and β, respectively, as shown in the figure. These angles are given by 

  
( )

2

1
n
K

πα π θ

β α

= = −

= −
 (1) 

where θ  is the internal angle of the regular n-gon. 

Gailiunas phenomenal vertex spiral tiling, which will spiral with any number of arms, is based on 
the angle β as the vertex. As such, β must be mod 360, or alternatively ( )1n K −  must be an 

integer. So, for example, for n = 6 to 36, there are 52 possible spirals of various arms. 
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Figure 2: Example Gailiunas tiles for n = 23, K = 3:11 (right to left). 
 

The present work, however, is based on α as the vertex angle. All these tiles will tile radially 
because all α are mod 360. There are 256 possible tilings between n = 6 to 36, of which 136 are of 
even n that can be spiraled with the Goldberg shift. But we get ahead of ourselves. 

The tiles used for Parquet tiling are Gailiunas tiles that are concatenated at the top in an 
antisymmetric configuration, e.g., β  joins with π−β.  Figure 3 shows some examples based on the 
same tiles as in Figure 2. And just like the Gailiunas tiles, these are completely specified by the 
two parameters n and K. The only difference is that there are now 4K-2 equilateral sides to these 
polygons. 

 

Figure 3: Parqueting tiles for n = 23, K = 3:11 (right to left). 
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PARQUET TILING 

Figure 4 demonstrates the concept of parquet tiling. Tiles are laid out with each ‘corona’ having 
one more tile than the last and at right angles to it. The tiles are numbered to show the ordering and 
colored to indicate the different coronas. The process can continue indefinitely. Believe it or not, 
we now have a radial sector that can be rotated to fill a radial tiling. Now, this tile is described by 
( ) ( ), 4,2n K =  and is not very interesting, but it makes the point. Actually, tiles with K < 3 are 

degenerate and not of interest. In practice, we restrict ourselves to 3K ≥  and 6n ≥ .  

 

Figure 4: Parquet tiling layout; shades of grey indicate coronas. 
 

Although Figure 4 clearly shows the parqueting property, it can become more difficult to discern 
as n and K increase. Table 1 shows some additional sectors for other values of n and K. Bear in 
mind that 2K n≤    , hence the vacant cells. In addition to successive coronas being oblique to 

each other, they are composed of conjugate tiles. 
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Tile  
n→ 
K↓ 

4 8 16 

2 

   

4  

  

8   

 
Table 1: Some examples of Parquet tiling sectors as a function of n and K. 

 

It almost goes without saying that these sectors will tessellate upon rotation for any values of n and 
2K n≤    . Moreover, they will spiral for all even n, in accordance with the Goldberg shift. In this 

paper we take the shift, x∆  to be the distance between peaks and troughs of the sector edges seen 
in the table. The spirals are then created quite simply as follows: 

  spiral top botZ Z Z g x = + ∆   (2) 

where topZ  and botZ  are the sectors in the top and bottom halves of the plane, respectively, g is the 

number of the Goldberg shift.  

This is amazingly simple, but there is one caveat that must be noted. When the absolute value of 
the shift, g is an odd number, then we must replace botZ  by *

botZ− , i.e., the negative conjugate. 

A Matlab program is provided for calculating these tilings; it is described in the next section. 
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ABOUT THE PROGRAM 

A complete Matlab program, ParquetTiling4NCB.m is available in Appendix A. The input and 
output variables are described here. The program optionally plots the results of the specified tiling. 
It can be easily modified at the user’s whim. 

The program is run from the command line as follows: 

W=ParquetTiling4NCB(n,K,coronas,shift,dual,trim,plotting); 

The output, W is a complex matrix of tiles. The columns are the tiles and the rows are their 
complex coordinates. The input parameters are described in Table 2. 

Parameter Description Remarks 
n 
 
 

 

The order of  the regular n-gon 
that is the grandparent of the 
parquet tile 

6n ≥   

K 
 
 

The second tile parameter; it is ¼ 
the number of sides of the tile  

3 2K n≤ ≤     

coronas 
 
 

The number of annuli about the 
central core tiles 

This should be 1≥  . 

shift The number of tiles to shift in 
order to create spirals by 
Goldberg’s method 

Positive or negative integers; 
normally  
|shift| ≤ coronas 
 

dual 
 
 
 

Indicates whether to create 
Parquet ( = 1)  or  
Gailiunas (not 1) tiling 

See below 

trim 
 
 
 

Indicates whether to trim ( =1) or 
not (not 1) to trim the fins 
(spikes) 

This is ignored when  
dual=0. 
 
See below 

plotting 
 
 

Indicates whether to plot ( =1) or 
not (not 1) to plot the results 

 

Table 2: Program input parameters. 
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Figure 5 (a) shows a typical spiral, in this case, a Parquet tile with ( ) ( ), 14,6n K = , three coronas, 

and a shift of minus one. Now, an interesting thing about the program is that it doesn’t care if the 
Parquet tile is replaced by its parent tiles. In this case, you recover the same tiling, but with all the 
tiles split in two, as seen in Figure 5 (b). The striking fins on the periphery are the residual tiles 
from the ‘parquet.’ They can be optionally omitted in the program to fully reproduce a more 
typical looking spiral of Gailiunas tiles, as seen in Figure 5 (c), These tilings are not same as those 
in Gailiunas (2000). So, in a word, a single pair ( ),n K  can produce three distinctive tilings. 

 

Figure 5: Examples of Parquet tiling program output: (a) ‘parquet’ configuration; (b) 
‘Gailiunas’ configuration (includes residual spikes); (c) ‘Gailiunas’ configuration with 

optional removal of residual tiles). 
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The following code will produce Figure 5a in 0.08 seconds: 

n=14;K=6;coronas=3;shift=-1;dual=0;trim=0;plotting=1; 
W=ParquetTilings4NCB(n,K,coronas,shift,dual,trim,plotting); 
 
The program has no limits on the order of the regular polygon, n or the number of coronas. As a 
practical matter, the plots will become too dense to see anything beyond a certain limit. That’s not 
to say that you couldn’t zoom in and find some interesting things, such as that seen in Figure 6. 

 

Figure 6: Example of extreme tiling: n = 120, K = 60. 
 

The quest for additional tiles that lend themselves to Parquet tiling will be left as an exercise for 
the reader. We have provided the tools and the rules. 

A gallery of randomly created images is shown below. The program for generating these, as well 
as testing the program, is embedded in the header section of the main program. The title in each 
figure gives the input parameters: n,K,coronas,shift,dual,trim. The gallery has been sorted 
into increasing values of n and K to demonstrate the transition from simplicity to complexity. 
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BONUS: GAILIUNAS TILING 

Gailiunas tiling has been mentioned several times herein. We are providing the code for generating 
these, if for no other reason than to demonstrate that Parquet tiling is different and unique. The 
tiles are, of course, described by the same two parameters, n and K, albeit with the restriction that 
( )1n K −  is an integer. In fact, this is the number of arms, N of the spiral. 

We can reliably create spirals of N arms with tiles of n and K defined as follows: 

  
( )1 1,2,3,...

2
n N k k

K k
= − =
= +

 (3) 

Figure 7 shown an example tiling with 5 arms and ( ) ( ), 35,8n K = . This figure demonstrates the 

distinguishing feature of Gailiunas tiling. They all emanate from the center. In the algorithm, we 
develop a single arm and rotate it through the appropriate number of arms. 

 

Figure 7: Example Gailiunas tiling with 5 arms: n = 35, K = 8. 

The program GailiunasTiling4NCB.m found in Appendix B will produce the full set 52 tilings 
for ( )6 : 36n =  — in less than 15 seconds. Actually, the calculation takes less than 1/10th of a 

second; it’s the figures that consume the bulk of the time. Of course, the user may change the 
maximum value of n, as well as the level (or the radius of the spiral). Both parameters are found 
near the top of the program. The default level, as in Figure 7, is level=3.  
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Summary 

We developed a new paradigm for radial and spiral tilings because the prototiles we were 
interested in did not fit the old paradigms. Previous work was concerned with rhombus substitution 
tiles, whose radial sections consisted of staggered row of parallel tiles. The prototiles for the 
present effort are decidedly different. First, they are not rhombus substitutions, but more like 
parallelogram substitutions. Second, sectors are built up from successive coronas that are oblique 
to each other. Thus the new paradigm was dubbed ‘Parquet’ tiling. The prototiles are concatenated 
Gailiunas tiles and tessellate perfectly in this configuration. Basically, the entire tiling algorithm 
depends on the two parameters that fully define the tile itself. None of the tiles requires any special 
attention within the program. The remaining parameters are essentially just window dressing: How 
many coronas do want? Spirals? How many? Etc. 

An interesting feature of the program is that you can substitute a pair of the parent Gailiunas tiles 
for the Parquet tile and get two optional tilings. Thus we may have inadvertently expanded the 
scope of Gailiunas tiling. 

It was about two weeks from when we tried rhombic tiling of the Gailiunas tile, to miserable 
failure, and finally to where we are today. 
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Gallery of random Parquet tilings
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Appendix A: Parquet Tiling Program 

function W=ParquetTilings4NCB(n,K,coronas,shift,dual,trim,plotting) 
% this program was created for the National Curve Bank to accompany the 
% submission "New Gailiunas Tiling," 
% see http://curvebank.calstatela.edu/waldman12/waldman12.htm for details 
%-------------------------------------------- 
% HERE IS A SHORT PROGRAM FOR RANDOM TESTING 
% % function TestParquetTilings4NCB 
% close all 
%  
% kmax=6; 
% nmax=4; 
% for n=1:nmax 
%     figure 
%     for k=1:kmax 
%         % n=floor(6+31*rand); 
%         n=2*floor(3+16*rand); 
%         K=3+floor((n/2-2)*rand); 
%         coronas=1+floor(5*rand); 
%         shift=-coronas+floor(2*coronas*rand); 
%         dual=round(rand); 
%         trim=round(rand); 
%         plotting=0; 
%         % n=14;K=6;coronas=3;shift=-1;dual=1;trim=1; 
%         W=ParquetTilings4NCB(n,K,coronas,shift,dual,trim,plotting); 
%         subplot(2,3,k) 
%         plot(W,'b','LineWidth',0.5);axis equal 
%         title(['(n,K,c,s,d,t) = ['... 
%             num2str(n) ',' num2str(K) ',' num2str(coronas) ',' ... 
%             num2str(shift) ',' num2str(dual) ',' num2str(trim)  
']'],'FontSize',10) 
%         axis off 
%         axis tight 
%         set(gcf,'Color','w') 
%     end 
% end 
%  
% return 
%-------------------------------------------- 
% Copyright 2014, Cye H. Waldman 
% Let me know how this works out for you at cye@att.net 
  
iseven=inline('rem(number,2) == 0;','number'); 
isodd=inline('rem(number,2) == 1;','number'); 
  
% calculate the tile 
z0=Gailiunas(n,K); 
h=max(imag(z0)); 
  
zm=-z0+1+2*real(z0(K+2))+i*2*h; 
Z1=[z0(1:K);zm(K+2:end);zm(2:K);z0(K+2:end)]; 
theta=angle(Z1(2*K)); 
Z1=Z1*exp(i*(pi/2-theta)); 
Z0=Z1*exp(-i*(pi/2-theta)); 
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z0=Z0; 
zsave=z0; 
zl=[Z0(1:K+1);Z0(3*K:end)]; 
zu=[Z0(2*K:3*K);Z0(K+1:2*K)]; 
if dual 
    z0=[zl zu]; 
end 
  
zc=-conj(z0); 
theta=angle(zc(K+1)-zc(K)); 
  
zc=-conj(z0); 
theta=angle(zc(K+1)-zc(K)); 
% precalculate zn, the thiles for each corona 
prev=z0; 
for c=1:coronas; 
    next=[z0 prev+1]; 
    prev=next; 
    if isodd(c) 
        assignHere(['z' num2str(c)],-conj(next)*exp(-i*theta)); 
    else 
        assignHere(['z' num2str(c)],next) 
    end 
end 
  
% calculate the tiles in a sector up to the specified corona 
Z0=z0; 
if coronas==1 && dual && trim 
    z1=z1(:,1:2:end); 
end 
Z1=[Z0 z1+Z0(K)]; 
  
% the Z's 
last=1; 
that=Z1; 
for c=2:coronas 
    this=that; 
    next=eval(['z' num2str(c)]); 
    if c==coronas && dual && trim 
        next=next(:,1:2:end); 
    end 
    last=last+c-2; 
    if dual 
        that=[this next+this(2,2*last)]; 
    else 
        that=[this next+this(2*K+1,last)]; 
    end 
end 
Z=that; 
  
% now rotate it so that the left wall is vertical 
beth=angle(zsave(2*K+1)); 
Z=Z*exp(i*(pi/2-beth)); 
% and then level with the negative x-axis 
Z=Z*exp(i*pi/2); 
W=Z; 
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for k=1:n-1 
    W=[W Z*exp(-i*k*2*pi/n)]; 
end 
  
if abs(shift)>0 && iseven(n) 
    Wtop=W(:,1:end/2); 
    if iseven(shift) 
        Wbot=(W(:,end/2+1:end)); 
    else 
        Wbot=-conj(W(:,end/2+1:end)); 
    end 
    delx=abs(z0(K)); 
    W=[Wtop Wbot+delx*shift]; 
end 
  
if plotting 
    figure;plot(W,'b','LineWidth',0.5);axis equal 
    title(['(n,K,c,s,d,t) = ['... 
        num2str(n) ',' num2str(K) ',' num2str(coronas) ',' ... 
        num2str(shift) ',' num2str(dual) ',' num2str(trim) ']'],'FontSize',12) 
    axis off 
    set(gcf,'Color','w') 
end 
  
return 
  
  
function z=Gailiunas(n,K) 
% classic Gailiunas tile 
  
if K>floor(n/2)  
    warning('K was too large; n was djusted to 2*K'); 
    n=2*K; 
end 
  
theta=(n-2)*pi/n*ones(n,1); 
phi=cumsum(pi-theta); 
z=cumsum(exp(i*phi)); 
zn=[0;z]; 
zs=zn-1; 
  
% calculate the tile 
z1=zn(1:K); 
z2=flipud(z1-1); 
  
z=[z2(end);z1;z2]; 
z=z+1; 
  
return 
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function assignHere(varargin) 
%ASSIGNHERE Creates a variable in the current workspace. 
%   ASSIGNHERE is a little trick to get ASSIGNIN to assign a 
%   variable in the current workspace. 
% 
%   Example:  assignHere('test', [1 2 3]); 
%   If this were attempted within a function file, it would not be 
%   possible to assign in the current workspace, only the caller or 
%   base. 
  
%    Doug Hull <hull@mathworks.com>     3/11/2003 
%    Copyright 1984-2003 The MathWorks, Inc. 
%    This function is not supported by The MathWorks, Inc. 
%    It is provided 'as is' without any guarantee of 
%    accuracy or functionality. 
  
assignin('caller', varargin{:}) 
 
return 
  

17 



Waldman-Parquet Tiling June 2015 

Appendix B: Gailiunas Tiling Program 

function GailiunasTiling4NCB 
% this program calculates the vertex spirals for the tiles derived from 
% overlapping regular n-gons by Paul Gailiunas (2000).  
% “Spiral Tilings” Bridges 2000 Conference Proceedings, pp.133-140. 
% Available at http://archive.bridgesmathart.org/2000/bridges2000-133.pdf. 
%-------------------------------------------- 
% Copyright 2014, Cye H. Waldman 
% Let me know how this works out for you at cye@att.net 
  
index=0; 
level=2; 
nmax=36; 
for n=6:nmax 
    for K=3:floor(n/2) 
        arms=n/(K-1); 
        if mod(arms,1)==0 
            theta=(n-2)*pi/n*ones(n,1); 
            phi=cumsum(pi-theta); 
            z=cumsum(exp(i*phi)); 
            zn=[0;z]; 
            zs=zn-1; 
             
            % calculate the tile 
            z1=zn(1:K); 
            z2=flipud(z1-1); 
             
            z=[z2(end);z1;z2]; 
            z=z+1; 
            % arrange the tile to congorm to Gailiunas convention 
            % the origin is at the base angle and tile is rotated 
            z=(z-z(K+1))*exp(i*pi); 
            z=[z(K+1:end);z(2:K);0]; 
             
            % the building blocks 
            zc=conj(z); 
            alef=angle(zc(K+2)-zc(K+1)); 
            beth=angle(z(3)-z(2)); 
            this=(zc-zc(K+1))*exp(-i*(alef-beth))+z(2); 
            zzc=[z this]; 
             
            % start the spiral with zzc 
            Z=[]; 
            for k=1:K-1 
                alef=angle(zzc(2,1)-zzc(1,1)); 
                beth=angle(z(2*K+1-k)-z(2*K+2-k)); 
                this=(zzc-zzc(1,1))*exp(-i*(alef-beth))+z(2*K+2-k); 
                Z=[Z this]; 
            end 
             
            % build the 1st repeating tile 
            z2=[z z+1]; 
            zc2=[zc zc+1]; 
            alef=angle(zc(K+2)-zc(K+1)); 
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            beth=angle(z2(3,end)-z2(2,end)); 
            this=(zc2-zc2(K+1,1))*exp(-i*(alef-beth))+z2(2,end); 
            Z2=[z2 this]; 
             
            alef=angle(z(K+2)-z(K+1)); 
            for N=3:level 
                tempn=eval(['[z' num2str(N-1) ' z+' num2str(N-1) ']']); 
                tempc=eval(['[zc' num2str(N-1) ' zc+' num2str(N-1) ']']); 
                beth=angle(tempn(3,end)-tempn(2,end)); 
                this=(tempc-tempc(K+1,1))*exp(-i*(alef-beth))+tempn(2,end); 
                that=[tempn this]; 
                assignHere(['z' num2str(N)],tempn); 
                assignHere(['zc' num2str(N)],tempc); 
                assignHere(['Z' num2str(N)],that); 

    % assignHere is in Appendix A 
            end 
             
            alef=angle(z(end-1)-z(1)); 
            for m=2:level 
                temp=eval(['Z' num2str(m)]); 
                for k=1:K-1 
                    beth=angle(Z(K,end)-Z(K+1,end)); 
                    this=(temp-temp(1,1))*exp(-i*(alef-beth))+Z(K+1,end); 
                    Z=[Z this]; 
                end 
            end 
             
            W=[]; 
            for k=0:arms-1 
                W=[W Z*exp(i*k*2*pi/arms)]; 
            end 
             
            figure;plot(W,'b','LineWidth',1) 
            axis equal;axis off;set(gcf,'Color','w') 
            title([num2str(n) '-gon with K = ' num2str(K)... 
                ' and ' num2str(arms) ' arms (' num2str(length(W))... 
                ' tiles)' ],'Color','b') 
            drawnow 
            if index<10 
                numstr=['00' num2str(index)]; 
            elseif k<100 
                numstr=['0' num2str(index)]; 
            else 
                numstr=num2str(index); 
            end 
            namestr=['Gailiunas' numstr]; 
            % print('-dpng',namestr) 
            index=index+1; 
        end 
    end 
end 
  
return 
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