The Incomplete Gamma Function for L-A Curves with Integer Parameter
 Cye H. Waldman
 cye@att.net
 Copyright 2013

In this technical note we develop closed-form solutions for the class of log-aesthetic curves that are defined by the incomplete gamma function with integer parameter. This note follows the analysis and conventions of Ziatdinov et al. (2012).

Here is a quick review of how we arrived at the solution in terms of the incomplete gamma function. From the definition of log-aesthetic curve we have for case of $\alpha \notin[0,1]$

$$
\begin{gather*}
z(\psi)=\int_{0}^{\psi} \rho(\theta) e^{i \theta} d \theta \\
\rho(\theta)=[(\alpha-1) \lambda \theta+1]^{\frac{1}{\alpha-1}} \tag{1}
\end{gather*}
$$

Make the following transformation of variables:

$$
\begin{align*}
& t=-i \frac{1}{(\alpha-1) \lambda}[(\alpha-1) \lambda \theta+1] \\
& \theta=i t-\frac{1}{(\alpha-1) \lambda} ; \quad d \theta=i d t \tag{2}\\
& \rho(t)=[i(\alpha-1) \lambda t]^{\frac{1}{\alpha-1}} \\
& a=\frac{\alpha}{\alpha-1}
\end{align*}
$$

Substitute into Eq. (1) to get the result in terms of the incomplete gamma function

$$
\begin{align*}
z(\psi)=x(\psi)+i y(\psi) & =\int_{t(0)}^{t(\psi)}[i(\alpha-1) \lambda t]^{a-1} e^{i\left(i t-\frac{1}{(\alpha-1) \lambda}\right)} i d t \\
& =i[i(\alpha-1) \lambda]^{a-1} e^{-\frac{i}{(\alpha-1) \lambda} \int_{t(0)}^{t(\psi)} t^{a-1} e^{-t} d t} \tag{3}\\
& =\left.i[i(\alpha-1) \lambda]^{a-1} e^{-\frac{i}{(\alpha-1) \lambda}} \Gamma(a, t)\right|_{t(\psi)} ^{t(0)}
\end{align*}
$$

We now confine our attention to the case of integer values of a. These are consistent with the special values of α [Ziatdinov et al. (2012)] that also lead to solutions in terms of polynomials. We note that for integer values of a the incomplete gamma function reduces to a polynomial in t [see, for example, Olver et al. (2010)], to wit

$$
\begin{equation*}
\Gamma(a, t)=(a-1)!e^{-t} \sum_{k=0}^{a-1} \frac{t^{k}}{k!} \tag{4}
\end{equation*}
$$

The closed-form solution for $z(\psi)$ can now be written as

$$
\begin{equation*}
z(\psi)=\left.i^{a}[(\alpha-1) \lambda]^{a-1}(a-1)!e^{-\frac{i}{(\alpha-1) \lambda}} e^{-t} \sum_{k=0}^{a-1} \frac{t^{k}}{k!}\right|_{t(\psi)} ^{t(0)} a \geq 2 \tag{5}
\end{equation*}
$$

Also, note that the product of the exponentials may be written alternatively as $e^{-i /(\alpha-1) \lambda} e^{-t}=e^{i \theta}$. The table below shows the polynomial terms for the first few values of a.

a	$\sum_{k=0}^{a-1} \frac{t^{k}}{k!}$
2	$1+t$
3	$1+t+\frac{t^{2}}{2!}$
4	$1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}$
5	$1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\frac{t^{4}}{4!}$
\vdots	\vdots
10	$1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\frac{t^{4}}{4!}+\frac{t^{5}}{5!}+\frac{t^{6}}{6!}+\frac{t^{7}}{7!}+\frac{t^{8}}{8!}+\frac{t^{9}}{9!}$
	Etc.

The proposed solution has two advantages over those in Ziatdinov et al. Specifically, the entire solution is contained in a single complex variable with a single summation. In addition, due to the transform of variables, the polynomial is greatly simplified and consists only of powers of t with constant coefficients, i.e., independent of a and λ.

Figures 1-6 show results for a-values in ascending powers of 2 , i.e., $a \in[2,4,8,16,32,64]$, for various values of $\lambda, \lambda \in[0.01,0.05,0.1,1.0]$. The computation was performed with the recommended lower limit for the integration given by Ziatdinov et al. The figures compare
solutions by three different methods: a. direct numerical simulation of Eq. (1) using the trapezoidal method; b. solution in terms of the incomplete gamma function, Eq. (3) (bottom), using the asymptotic form of the incomplete gamma function series expansion; and c. solution in terms of the polynomial, Eq. (5). In all cases, the results are indistinguishable at the scale of the figures. For values of $a \gtrsim 75$ the incomplete gamma function and polynomial methods run into overflow problems, but the direct numerical simulation has no such problems (the largest value we tried was $a=2^{12}$).

The aggregate time for the computation all 24 cases for each method, representing a broad range of a and λ values, are shown in the table below. Calculations were performed with 10^{5} and 10^{6} θ-values. The calculations were carried out on Pentium 6-core i7 3.20 GHz computer using Matlab. The exceptional speed of the DNS can be attributed to the Matlab function cumtrapz; this is in lieu of $10^{5}-10^{6}$ for loop calculations.

Time (s) to calculate all 24 cases		
$a \in[2,4,8,16,32,64] ; \quad \lambda \in[0.01,0.05,0.1,1.0]$		
Method	$\Delta \theta=\mathcal{O}\left(10^{-5}\right)$	$\Delta \theta=\mathcal{O}\left(10^{-6}\right)$
DNS: $\int_{0}^{\psi} \rho(\theta) e^{i \theta} d \theta$	0.23	3.25
IGF: $f(a, \lambda) \cdot \Gamma(a, t)$	12.3	128.6
Poly: $f(a, \lambda) \cdot e^{-t} \sum_{k=0}^{a-1} \frac{t^{k}}{k!}$	1.65	14.2

The figures are at the end of the document.

References

Olver, F.W.J., Lozier, D.W., Boisvert, R.F., and Clark, C.W., (2010). NIST Handbook of Mathematical Functions. Cambridge University Press, New York.

Ziatdinov, R., Yoshida, N., and Kim, T, (2012). Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions, Computer Aided Geometric Design, 29 (2), 129-140.

Figure 1: Log-aesthetic curves with $\boldsymbol{a}=2(\alpha=2)$. The value of $\boldsymbol{\theta}$ is changing from its lower bound to 10 radians.

Figure 2: Log-aesthetic curves with $\boldsymbol{a}=\mathbf{4}(\alpha=4 / 3)$. The value of $\boldsymbol{\theta}$ is changing from its lower bound to 10 radians.

Figure 3: Log-aesthetic curves with $\boldsymbol{a}=\mathbf{8}(\alpha=8 / 7)$. The value of $\boldsymbol{\theta}$ is changing from its lower bound to 10 radians.

Figure 4: Log-aesthetic curves with $\boldsymbol{a}=\mathbf{1 6}(\alpha=16 / 15)$. The value of $\boldsymbol{\theta}$ is changing from its lower bound to 10 radians.

Figure 5: Log-aesthetic curves with $\boldsymbol{a}=32(\alpha=32 / 31)$. The value of $\boldsymbol{\theta}$ is changing from its lower bound to 10 radians.

Figure 6: Log-aesthetic curves with $\boldsymbol{a}=\mathbf{6 4}(\alpha=64 / 63)$. The value of $\boldsymbol{\theta}$ is changing from its lower bound to 10 radians.

