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In this technical note we develop closed-form solutions for the class of log-aesthetic curves that 
are defined by the incomplete gamma function with integer parameter. This note follows the 
analysis and conventions of Ziatdinov et al. (2012). 
 
Here is a quick review of how we arrived at the solution in terms of the incomplete gamma 
function. From the definition of log-aesthetic curve we have for case of [ ]0,1α ∉  
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Make the following transformation of variables: 
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Substitute into Eq. (1) to get the result in terms of the incomplete gamma function 
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We now confine our attention to the case of integer values of a. These are consistent with the 
special values of α [Ziatdinov et al. (2012)] that also lead to solutions in terms of polynomials. 
We note that for integer values of a the incomplete gamma function reduces to a polynomial in t 
[see, for example, Olver et al. (2010)], to wit 
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The closed-form solution for ( )z ψ  can now be written as 
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Also, note that the product of the exponentials may be written alternatively as ( )1i t ie e eα λ θ− − − = . 

The table below shows the polynomial terms for the first few values of a. 
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    

10 
2 3 4 5 6 7 8 9

1
2! 3! 4! 5! 6! 7! 8! 9!
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 Etc. 

 

The proposed solution has two advantages over those in Ziatdinov et al. Specifically, the entire 
solution is contained in a single complex variable with a single summation. In addition, due to 
the transform of variables, the polynomial is greatly simplified and consists only of powers of t 
with constant coefficients, i.e., independent of a and λ. 

Figures 1 - 6 show results for a-values in ascending powers of 2, i.e., [ ]2,4,8,16,32,64a∈ , for 

various values of λ, [ ]0.01,0.05,0.1,1.0λ∈ . The computation was performed with the 

recommended lower limit for the integration given by Ziatdinov et al. The figures compare 
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solutions by three different methods: a. direct numerical simulation of Eq. (1) using the 
trapezoidal method; b. solution in terms of the incomplete gamma function, Eq. (3) (bottom), 
using the asymptotic form of the incomplete gamma function series expansion; and c. solution in 
terms of the polynomial, Eq. (5). In all cases, the results are indistinguishable at the scale of the 
figures. For values of a  75 the incomplete gamma function and polynomial methods run into 

overflow problems, but the direct numerical simulation has no such problems (the largest value 
we tried was a = 212). 

The aggregate time for the computation all 24 cases for each method, representing a broad range 
of a and λ values, are shown in the table below. Calculations were performed with 105 and 106 
θ−values. The calculations were carried out on Pentium 6-core i7 3.20 GHz computer using 
Matlab. The exceptional speed of the DNS can be attributed to the Matlab function cumtrapz; 
this is in lieu of 105-106 for loop calculations. 

Time (s) to calculate all 24 cases 
[ ] [ ]2,4,8,16,32,64 ; 0.01,0.05,0.1,1.0a λ∈ ∈  

Method ( )510θ −∆ =O  ( )610θ −∆ =O  
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The figures are at the end of the document. 
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Figure 1: Log-aesthetic curves with a = 2 ( )2α = . The value of θ  is changing from its 
lower bound to 10 radians. 

 

Figure 2: Log-aesthetic curves with a = 4 ( )4 3α = . The value of θ  is changing from its 
lower bound to 10 radians. 
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Figure 3: Log-aesthetic curves with a = 8 ( )8 7α = . The value of θ  is changing from its 
lower bound to 10 radians. 

 

Figure 4: Log-aesthetic curves with a = 16 ( )16 15α = . The value of θ  is changing from its 
lower bound to 10 radians. 
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Figure 5: Log-aesthetic curves with a = 32 ( )32 31α = . The value of θ  is changing from its 
lower bound to 10 radians. 

 

Figure 6: Log-aesthetic curves with a = 64 ( )64 63α = . The value of θ  is changing from its 
lower bound to 10 radians. 
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