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The gamma pulse is a model transient pulse that was designed for application to physical 
systems. It can be convolved with impulsive solutions in temporal or harmonic space to develop 
the transient response to an input pulse. It has many interesting mathematical properties as well, 
and can be used as a plane curve generator in the complex plane. In this brief note we discuss 
application to plane curves and physical pulses. Thus, without any further ado, we introduce the 
gamma pulse, 
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where u is the Heaviside function, the parameter τ  can be likened to a (dimensionless) time, and 
the complex constant n is referred to as the pulse order. The pulse derives its name from the fact 
that it is the kernel of the well-known gamma function. Plane curves arise with complex n, 
whereas real, positive n lead to models of physical pulses. 
 
Plane curves 
 
We shall first describe some general properties of the gamma pulse and then give some specific 
examples of plane curves. The gamma pulse is related to the Cauchy pulse through the Fourier 
transform as follows: 
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where ϖ  is the (dimensionless) frequency. The Cauchy pulse has been described previously 
(http://curvebank.calstatela.edu/waldman/waldman.htm) and is given by 
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The Cauchy pulse is amenable to the fractional calculus and the pulse order n can be literally 
anything: rational or irrational, real or complex. Mathematically, this carries over to the gamma 
pulse and allows us to explore plane curves in the complex plane. The gamma pulse itself is not 
amenable to the fractional calculus, but merely enjoys the freedom of exponentiation.  
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Fractional derivatives of the gamma pulse can be derived from the following equation from K.B. 
Oldham and J. Spanier, The Fractional Calculus, Dover, 1974, 
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Here we see the right-hand-side is equal to ( );1 qγ τ +  upon the transformation 1 xτ = . 

Therefore, we can derive the following fractional derivative for the gamma pulse, 
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We now turn our attention the gamma pulse as a plane curve generator. This requires that n is 
complex, of course. There are two curve types in the gamma pulse family; depending on whether 
n is purely imaginary or complex. When n is purely imaginary we find a type of spiral that is 
previously unknown to us. An example is shown in Figure 1 for n = 10i. Starting from the origin 
(τ = ∞ ) the spiral opens up in the usual way, but instead of expanding ever outward it reaches a 
limit cycle at the unit circle with the concentric rings getting tighter as the limit cycle is 
approached. As n increases or decreases, so does the number of revolutions to reach the limit. 

 

Figure 1: Limit cycle spiral (n = 10i). 
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The limit cycle is a reminder that any real positive number raised to an imaginary power lies on 
the unit circle, i.e., ( ) ( )cos ln sin lnaix a x i a x= + . This is consistent with 0 1x = . 

In Figure 2 we show the how superposing plots for ( );nγ τ±  produces a credible-looking yin-

yang symbol. Here, n i π= , however, it can be modified to alter the symbol to your taste. Note 
that for this curve the parameter τ  varies over several orders magnitude and was better 
represented in log space. Figure 3 shows a comparison of this gamma pulse with the classic 
model. This traditional yin-yang is composed solely of circular segments; the inscribed “S-
curve” has constant curvature and is not as aesthetically pleasing as the new model. The attached 
animations show the curve in Figure 2 being drawn and the evolution of the curve over the full 
range of positive imaginary n-values. Negative n merely produces the conjugate image (vertical 
flip). 

 

Figure 2: Yin-yang symbol, ( );iγ τ π± . 

The effects of complex n are shown in Figure 4. They take on the form of nested globules and 
the number and position of the visible globules varies with the real and imaginary parts of n. 
Referring to Figure 4 and letting n N iK= + , a casual observation shows that the figure becomes 
increasingly complex (i.e., more and larger globules) with decreasing N or increasing K, and vice 
versa. The attached animation shows the nested globules as we zoom in an astonishing 43 orders 
of magnitude. This was limited only by our software. The true depth of the nesting is as yet 
unknown. 
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Figure 3: Yin-yang symbol, ( );iγ τ π±  and classic model. 

 

Figure 4: Gamma globules (n = 10+10i). 
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The sample Matlab code below should be sufficient to get you started. 

p=inline('tau.^n.*exp(-tau)','tau','n'); 
tau=linspace(0,10,1e6+1)'; 
n=10+10i; 
figure;plot(p(tau,n));axis equal 
 
The specific Matlab code for the yin-yang is 

p=inline('exp(n*log(tau)).*exp(-tau)','tau','n'); 
tau=logspace(-11,1,1e6+1); 
n=i/pi; 
pyy=p(tau,n); 
q=[pyy;-flipud(pyy)]; 
figure;plot(q);axis(1.1*[-1 1 -1 1]);axis square 
 

In summary, we have developed a new class of curves in the complex plane that includes limit 
cycle spirals, the yin-yang symbol, and the gamma globules. 

An alternative take on the Yin-Yang curve 

Banakh et al. (“Fermat’s Spiral And The Line Between Yin And Yang,” arXiv:0902.1556v2,  
2009) take a different approach to the yin-yang curve. Their analysis is rather involved and 
beyond the scope of this paper. Let it suffice to say that they prove that Fermat’s spiral is a 
unique yin-yang line in the class of smooth curves algebraic in polar coordinates. 

Fermat’s spiral in polar coordinates can be expressed as 2r aθ= . Without loss of generality, we 
can take the constant a to be unity and the entire yin-yang family of curves can be expressed in 
the complex plane as ( ) 1 2 iz e θθ θ= ± . Figure 5 [after Banakh et al. (2009)] shows Fermat’s spiral 

and some example bounding circles which define the yin-yang curves within. As the circles 
increase in radius, the yin-yang curve wraps around itself. The same effect is seen in the gamma 
pulse, albeit with changes in the pulse order, as demonstrated in Figure 6, except that here all the 
curves are bound by the circle of unit radius. The major difference between these two models is 
that the Fermat spiral crosses the bounding circle whereas the gamma pulse approaches it 
asymptotically. This is seen quite clearly in a comparison with the Fermat spiral bounded by the 
unit circle, as seen in Figure 7. The Fermat spiral exhibits kinks in the nose of the yin and yang 
while the gamma pulse is smooth throughout. 

What we learn from Banakh et al. is to regard the yin-yang curves as a complete family that 
divides a disc into two congruent perfect sets in a specific way. They accomplish this 
intentionally for an algebraic polar equation and end up with Fermat’s spiral. We accomplished a 
similar result inadvertently with a gamma pulse of imaginary order. 
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Figure 5: Fermat’s spiral and yin-yang curves [after Banakh et al. (2009)]. 

 

Figure 6: Example yin-yang curves from the gamma pulse with imaginary order n. 
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Figure 7: Comparison of yin-yang curves of Fermat’s spiral (unit radius) and gamma pulse, n i π= − . 

Physical pulses 

In physical systems, a pulse can be adequately defined with two parameters: the rise time and the 
pulse width. These can be modeled with a gamma pulse of order n and characteristic frequency k. 
In physical space the pulse is given by 
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The pulse appropriately has the dimensions of inverse time. In the analysis we shall use the 
dimensionless time k tτ = . 
 
In the present effort we show how to relate the pulse order and characteristic frequency to the 
rise time and the pulse width. Thus, k tτ= ∆ ∆ , where t∆  is a user specified pulse width in 
physical space and τ∆  is a dimensionless pulse width to be determined in this analysis. We 
shall, in fact, look at several criteria for the pulse width: rms pulse width, inflection points, 
Gaussian, and full-width-half-max (FWHM) or 3dB pulse width. The dimensionless pulse width 
will be seen to a function of the pulse order only. 
 
Figure 8 shows a sampling of pulses of orders 0.1 1000n = →  for a millisecond pulse (in 
physical time). Note that these curves are normalized to unit area. The overlaid black lines are 
the asymptotic solutions for large pulse orders (see below).  
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Figure 8: Gamma pulses of various orders. 

 

We now examine some properties of the pulse in order to ascertain the pulse width in similarity 
space, τ∆ . The gamma pulse properties are summarized below: 

 

(a) Time to maximum signal (i.e., the dimensionless rise time) 
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(b) Inflection points (two for 1n ≥ , but only one real inflection point for 1n < ) 
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(c) Mean time 
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(d) rms pulse width 
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(e) Asymptotic behavior (large n) 
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(f) 3dB pulse width 
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  (13) 

 

Figure 8 shows the asymptotic solutions overlaid on the exact solutions for values of 10n ≥ .  
The figure also emphasizes the fact that the magnitude of the area-normalized pulse approaches a 
constant value that is given by  
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Furthermore, it follows from the Fourier transform, Eqs. (2) that 
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That is, for large n the Cauchy pulse becomes sinusoidal with a Gaussian envelope. 

Figure 9 shows a comparison of the exact 3dB pulse width compared with some approximations. 
The empirical value shown in Eq. (13) has an error of less than 1%. This result is virtually 
indistinguishable from the numerical solution at the scale of this figure. 
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Figure 9: Pulse width in similarity space. 

 

In summary, we have developed a model pulse for physical systems that gives the user control 
over the pulse width and the rise time, or in the case of large n, the delay time. 

Please feel free to direct any inquiries to me at cye@att.net. And certainly inform me of your 
own discoveries. Thanks. 
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