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Figure 1: A generic anamorphic tiling and one of three possible spirals. 

Introduction 
 
We are familiar with the concept of gnomonic tiling in which a figure added to another 
reproduces the shape of the original. The process can repeated over and over to form a tessellated 
mosaic that covers the plane. The initial tile is called the seed and added piece is called the 
gnomon. The gnomons generally increase in size geometrically, i.e., by a power law. Figures 
thus created are called whorled figures, as the gnomons are usually added in a circular fashion 
about the seed. See, for example, Gazalé [1] and Waldman [2]. 
 
In this paper we consider a particular whorled triangle and demonstrate that it can be generalized 
to arbitrary, indeed, even random growth, provided that the growth is monotonic. Thus we can 
create anamorphic tilings for which the ‘gnomons’ are all of different shapes, albeit within the 
same general family. Here, we are using the term anamorphic in the optical sense of having 
unequal magnifications along two axes perpendicular to each other. Figure 1 shows a generic 
anamorphic tiling and a single spiral. In fact, we demonstrate that these tilings support three 
different spirals and comment on the nature of those spirals. 
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Technical 
 
Figure 2 shows the layout for the calculation of the trapezoidal gnomons for an equilateral 
triangle. For an arbitrary sequence, say , the trapezoids have a side length 
and height given by 
 

  (1) 

 
The only requirement here is the sequence S is monotonically increasing. However, it can be 
readily shown that if this is a geometric sequence, e.g., , where , that the ratio 
is constant the gnomons are self-similar, as in the classic case of gnomonic tiling. 
 

 

Figure 2: Nomenclature for anamorphic triangle tiling. 

 
Figure 3 demonstrates three spirals can be shown to pass through some or all of the vertices of 
the triangles. By arbitrary convention, we denote the primary spiral (blue) as the one starting at 
the left vertex of the seed triangle and passing through two vertices of each triangle. The spiral 
must unroll in the same direction as the whorl. The complementary spiral (green) passes through 
all the remaining vertices, and likewise unfolds in the same direction as the whorl. Finally, the 
full spiral (red) passes through all the vertices and unfolds in the anti-whorl direction. 
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Figure 3: A generic anamorphic tiling and all three possible spirals. 

 

What you should know about these spirals: They are all composed of circular arcs. The arcs have 
their origins at the centroid of the defining triangle. The defining triangles for the primary and 
full spirals are the gnomonic triangle themselves, and have a radius that is the side of the triangle 
divided by , i.e., . The defining triangle for the complementary spiral is 
fundamentally different as it must span two triangles at a time. The side of the triangle is, in fact, 
the diagonal of the trapezoid. 
 
Referring to Figure 4, the side of the defining triangle, a is given by 
 

  (2) 

And the radius is again the side divided by . 
 
Now, it turns out that the primary and full spirals are regular pseudospirals, with a radius 
sequence of , and a rotation of  and , respectively. The 
complementary spiral does not conform the pseudospiral paradigm as defined by Waldman [3] 
and must be crafted by an ad hoc step-and-arc algorithm. The advantage of the pseudospiral is 
that there is a pro-programmed analytic solution. However, we note that when the gnomons are 
self-similar, the complementary spiral is also a pseudospiral. 
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Figure 4: Geometry for the complementary spiral. 

 
One final remark on the spirals: It is common to find comparable logarithmic spiral when there is 
a geometric growth. However, this is not the case here. True, the triangles grow geometrically, 
but the radius does not. That is because it is centered at the centroid of the triangle rather than the 
vertex. If the radii were centered at the vertices, then the spirals would be grotesquely scalloped. 
 
Sample Results 
 
Figure 5 shows a standard gnomonic tiling with a with a growth rate , where p is the plastic 
constant. Figure 6 shows an anamorphic tiling with a growth rate based on the Padovan 
sequence. And finally, Figure 7 shows an anamorphic tiling for a (sorted) random sequence. In 
all cases we show the primary (blue) and complementary (green) spirals on the left, and the total 
spiral (red) on the right. Again, we remind you that in an anamorphic tiling the trapezoids are not 
self-similar. 
 
The associated animations on the Web page [4] shows a sequence of gnomonic tilings; the 
growth ranges from 1.1 to . 
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Figure 5: Gnomonic tiling with geometric growth rate, pn. 

 

 
Figure 6: Anamorphic tiling and spirals with Padovan sequence growth.  

 

 

Figure 7: Anamorphic tiling and spirals with random sequence growth. 
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Project 
 
It seems plausible to generalize this one step further by using an arbitrary triangle seed. In that 
case it makes more sense to generate larger and larger triangles and to attach them sequentially in 
the correct position. Figure 8 shows two examples for random configurations. 
 

 

Figure 8: Example of fully random triangle tiling.. 

 
Computer program 
 
A Matlab computer program to produce the mono- and dignomonic tilings in this paper is 
provided in the Appendix. It’s quite simple to use. If there are no input parameters beyond the 
number of tiles desired, the program produces a monognomonic tiling with . If 
there is one input additional parameter, the program produces a normal monognomonic tiling 
with . If there are two more input parameters (  and , respectively) the program 
produces a regular dignomonic tiling; however, if the second input is ‘empty,’ that is, input as [], 
then the program will set . In all cases, Gazalé’s spiral and its complement are 

drawn over the tiling. The only requirement is that the growth rate . 

Summary and Conclusions 

We have made a modest addition to Gazalé’s work on dignomonic tiling and spiral. We have 
demonstrated an additional spiral that complements Gazalé’s in that it crosses all the other 
vertices. Moreover, we analytically determined the conditions for the complement to be totally 
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contained within the tiling and shown that the two spirals are self-similar in the monognomonic 
case. For additional interesting work on gnomons and tiling, see Waldman and Gray [2]. 

References 

[1] M.J. Gazalé, Gnomon: From Pharaohs to Fractals. Princeton University Press (1999). 
[2] Waldman, C.H. and Gray, S.B, Fibonacci, Padovan, & Other Pseudospirals, submitted for 
publication (2016). 
See also: http://curvebank.calstatela.edu/waldman6/waldman6.htm. 
Appendix: Computer Program 

function AnamorphicTriangle4NCB 
% this program calculates & plots anamorphic whorled triangles & 
spirals 
% based the whorled triangle of Gazalé, "Gnomons" on p. 111 
% USAGE 
% insert a monotonic sequence S=[s1;s2;;...;sn;...] where 
indicated below 
% EXAMPLES (OMIT DUPLICATE VALUES) 
% S=[1;2;3;5;8;13;21;34;55;...]; % Fibonacci sequence 
% S=[1;2;3;5;7;9;12;16;21;28;...]; % Padovan sequence 
% S=[1;4;10;14;22;30;35;46;62;72;77;94;105;...]; % Katydid 
sequence 
% S=(1:20)'; % linear sequence 
% S=primes(50)'; % primes sequence 
% S=sort(1+100*rand(20,1)); % Sorted random sequence 
% 
% Copyright 2016, Cye H. Waldman, algorithmicart@att.net 
  
S=sort(1+100*rand(20,1)); 
delS=@(k) (S(k+1)-S(k)); 
  
% seed triangle 
ztri=[0;(-1+i*sqrt(3))/2;-1;0;0]; % intentionally has 5 points 
  
% trapezoidal gnomons 
Z=S(1)*ztri; 
kmax=8; 
zprev=ztri; 
for k=1:kmax 
    zgno=[0;-S(k);-
S(k)+delS(k)*exp(i*4*pi/3);delS(k)*exp(i*5*pi/3);0]; 
    znext=zgno*exp(-i*2*(k-1)*pi/3); 
    if k==1 
        znext=znext-znext(1)+zprev(1); 
    else 
        znext=znext-znext(1)+zprev(3); 
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    end 
    Z=[Z znext]; 
    zprev=znext; 
end 
  
% 'super' triangles; previous triangle plus trapezoid 
T1=Z(1:4,1); 
T2=[Z(4,2);Z(2,1);Z(3,2);Z(4,2)]; 
T=[T1 T2]; 
for k=3:kmax+1 
    p1=eval(['Z(4,' num2str(k) ')']); 
    p2=eval(['Z(4,' num2str(k-1) ')']); 
    p3=eval(['Z(3,' num2str(k) ')']); 
    this=[p1;p2;p3;p1]; 
    T=[T this]; 
end 
  
% for testing, compare 
figure;plot(T,'k');axis equal;hold on 
figure;plot(Z,'k');axis equal 
  
% PRIMARY SPIRAL 
npts=101; 
Theta=[7*pi/6,pi/2]; 
z0=Centroid(Z(:,1)); 
r=abs(z0-T(1,1)); 
Pspi=ComplexCircularArc(r,z0,Theta,npts); 
for k=2:kmax+1 
    Theta=Theta-2*pi/3; 
    % get the centroid of the full triangle 
    w=T(:,k); 
    z0=Centroid(w); 
    r=abs(z0-T(1,k)); 
    zrnd=ComplexCircularArc(r,z0,Theta,npts); 
    Pspi=[Pspi;zrnd]; 
end 
  
% SECONDARY (COMPLEMENTARY) SPIRAL 
Sspi=[]; 
for k=2:kmax+1 
    thisrot=angle(Z(1,k)-Z(3,k))+pi/2; 
    z0=(Z(1,k)+Z(3,k))/2+exp(i*thisrot)*sqrt(3)/6*abs(Z(1,k)-
Z(3,k)); 
    r=abs(z0-Z(1,k)); 
    theta1=angle(Z(1,k)-z0); 
    theta2=angle(Z(3,k)-z0); 
    if theta1<theta2, theta1=theta1+2*pi; end 
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    Theta=[theta1 theta2]; 
    zrnd=ComplexCircularArc(r,z0,Theta,npts); 
    Sspi=[Sspi;zrnd]; 
end 
  
% TERTIARY (FULL) SPIRAL 
npts=101; 
Tspi=[]; 
Theta=[-5*pi/6 pi/2]; 
z0=Centroid(T(:,1)); 
r=abs(z0-T(1,1)); 
f1=ComplexCircularArc(r,z0,Theta,npts); 
Tspi=f1; 
for k=2:kmax+1 
    z0=eval(['T(1,' num2str(k) ')']); 
    z0=Centroid(T(:,k)); 
    theta1=angle(T(2,k)-z0); 
    theta2=angle(T(1,k)-z0); 
    if theta2<0, theta2=theta2+2*pi; end 
    Theta=[theta1 theta2]; 
    r=abs(z0-T(1,k)); 
    f1=ComplexCircularArc(r,z0,Theta,npts); 
    Tspi=[Tspi;f1]; 
end 
  
figure;plot(Z,'k');axis equal 
hold on 
plot(Pspi,'b','LineWidth',2) 
plot(Sspi,'Color',[0 .5 0],'LineWidth',2) 
v=axis; 
  
figure;plot(Z,'k');axis equal 
hold on 
plot(Tspi,'r','LineWidth',2) 
axis(v) 
  
return 
  
function z=ComplexCircularArc(R,z0,Theta,npts) 
% calculate a circular arc of radius R at z=z0 from 
Theta=[Theta(1) 
% Theta(2)] using npts points in the complex plane 
  
theta=linspace(Theta(1),Theta(2),npts)'; 
z=R*exp(i*theta)+z0; 
  
return 
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