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Introduction 
 
For the purpose of this paper we adopt the usual definition of a spiral, but with a caveat. The 
standard definition of a spiral is a curve on a plane that winds around a fixed center point at a 
continuously increasing or decreasing distance from the point. The caveat is an auxiliary 
stipulation that the curvature is monotonic. 
 
We define pseudospirals as those composed of adjoining circular arcs. These may or may not 
meet the condition of continuously increasing distance from the center point, but they certainly 
violate the auxiliary condition. 
 
Thus, by our definition, the classical Fibonacci spiral, shown in Figure 1, is a pseudospiral 
insofar as it is composed of quarter-circular segments with radii increasing in accordance with 
the Fibonacci sequence. It is typically drawn on “Fibonacci graph paper” in order to emphasize 
both the Fibonacci sequence and the quarter-circular structure, neither of which would be very 
apparent without it. Computer programs we have found for drawing the Fibonacci spiral use 
rather obtuse algorithms for determining where to place the arcs. We can do better than that. 
 

 

Figure 1: The classical Fibonacci spiral is composed of quarter-circular arcs. 

 

In this paper we present a simplified algorithm for the Fibonacci spiral and a closed-form 
analytic solution (and by closed-form we mean specifically a finite number of well-known 
functions) for an arbitrary real number sequence (integers, rationals, irrationals, positives, and 

1 

mailto:cye@att.net


Waldman- The Fibonacci Spiral and Pseudospirals 12 August 2013 

negatives), in any order, as well as arbitrary circular arcs. However, for the present we shall limit 
the exercise to the same angular arc for all segments. The Fibonacci spiral will be seen to be just 
one of an infinitude of pseudospirals. 

The Fibonacci spiral 

The few algorithms for the Fibonacci spiral that we have found seem to try to emulate the 
mechanical drawing process and get bogged down in managing where they were last and where 
they are going next (up-down-left-right, or compass points to some). It boils down to where to 
put the origin for next circular arc and where its (angular) starting point is. Assuming the 
“center” point of spiral is at the origin and the spiral is unfolding in the counterclockwise 
direction (as in Figure 1), then we can easily write an algorithm for this in the complex plane. 
The pseudo-code for the operation is as follows: 

 z0 = 0+0i; 
z = [ ]; 
Θ = [0 π/2]; 
θ = variable over Θ 
r = Fibonacci(1) 
repeat 
 z = [z;r*exp(i* θ)+z0] 
 r = Fibonacci(next) 
 z0 = z(end) - r* exp[i* θ(end)] 
 Θ = Θ + π/2 
 θ = variable over Θ 
until end 

 

 

The crux of the algorithm is in the statement z0 = z(end) - r* exp[i* θ(end)], which uses the complex 
variable to automatically compute the origin for the next arc; the exponential sets the direction 
from the last point on the current arc and the Fibonacci sequence gives the distance. Notice that 
we always move into the concave side of the curve for positive r. Later we will address the 
possibility of “negative” radius. 

The associated animations shows the Fibonacci spiral evolving out of “square” Fibonacci spiral 
(along the appropriate edges of the graph paper) and further evolving totally into the graph paper 
itself. The second animation show all the component curves. 

The Fibonacci spiral is frequently regarded as an approximation to the golden spiral, which is a 
logarithmic spiral whose growth factor is φ, the golden ratio. We find this amusing because an 
approximation should be easier than that which is being approximated. But calculation of the 
Fibonacci spiral is a cockamamie process as you have just seen, whereas the logarithmic spiral is 
a straightforward equation. A comparison of the two curves will be seen below. 

We now turn our attention to development of a fully analytic solution for a general pseudospiral. 
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A closed-form analytic solution for pseudospirals 

The above development of a rational algorithm for the Fibonacci spiral inspired some thinking 
that led to (a) an algorithm for arbitrary number sequences and (b) a path toward a true closed-
form solution for any pseudospiral. In this section we present the derivation of that analytic 
solution based on the universal curve equation (a generalization of the polynomial spiral 
equation), which has been described elsewhere; the complete write-up is available at 
http://curvebank.calstatela.edu/waldman4/waldman4.htm . 

The universal curve equation can be expressed in terms of the arc length, s or the tangent angle, 
θ  as follows 
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where the curvature and radius of curvature are given by 
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If we limit ourselves to pseudospirals (as defined above, consisting of circular arcs), then the 
tangent angle θ  is a polar angle relative to the local origin and ρ (θ) is the local radius given by 
any sequence of numbers, say { }1 2 3, , , , NS s s s s=   with S ∈ . Thus, 
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where kρ  are the elements of the sequence S and 0 0ρ = , u is the Heaviside function, 

( )1k kθ θ= − ∆ , and θ∆  is the angular range of the circular arcs. Equation (3) can be substituted 

into Eq. (1) (bottom) and integrated to obtain 
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Without any loss of generality we can rotate ( 2ie π ) and translate ( 1ρ+ ) the curve so that it 
conforms to that in Figure 1. Thus, the curve will unfold in the counterclockwise direction from a 
point on the x-axis equal to the first number in the sequence. Then, Eq. (4) becomes 
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This equation is in perfect agreement with the “step-and-arc” algorithm and direct numerical 
simulation for well-known integer sequences, including those with negative integers, as well as 
sorted and unsorted random number sequences with positive and negative numbers. Figure 2-5 
show some examples. 

Figure 2 shows the Fibonacci spiral out to 16 terms along with the golden spiral. All is as 
expected. Figure 3 shows the Jacobsthal and Jacobsthal-Lucas spirals. Although not immediately 
obvious here, these two curves from apparently different sequences are, in fact, self-similar. [For 
information on these and many other integer sequences refer to the Wiki page “Category: Integer 
sequences” (http://en.wikipedia.org/wiki/Category:Integer_sequences) for a complete 
description.] We will have more to say about self-similarity below. 

Figure 4-5 show results for a sorted and unsorted random 8-number sequence, respectively. The 
sequence values are in ( )5 : 5S ∈ − . The sorted sequence exhibits a single cusp where this 

sequence changes sign. The unsorted sequence, however, exhibits a cusp whenever that sequence 
changes sign. Of course, a negative sequence number means a negative radius, or one whose 
center is oriented outward, i.e., on the concave side of the curve. 

Some additional curves are shown in the Gallery below. A complete code for calculation and 
comparison of pseudospirals by various methods is presented in the Appendix. 

 

Figure 2: Fibonacci and golden spirals. 
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Figure 3: Jacobsthal and Jacobsthal-Lucas spirals. 

 

 

Figure 4: Unsorted random number sequence spiral, ( )5 : 5S ∈ − . 
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Figure 5: Sorted random number sequence spiral (same sequence as in Figure 4). 

 

Self-similarity 

Certain curves based on integer sequences exhibit self-similarity for sufficiently large n.  
Specifically, running curves out to various values of n will look identical (to within a rotation of 
axes). We have shown that curves that satisfy Binet-type functions meet this criterion. The Binet 
function has its origin in the well-known representation of the Fibonacci sequence in terms of the 
golden ratio 
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Many authors have successfully extended the Binet formula to variations of the Fibonacci 
sequence as well as other sequences. For example, Maynard (2008) derives an expression for the 
following sequence 

 0 1 1 20, 1, for 2n n nf f f a f b f n− −= = = + ≥  (7) 

Then, for ,a b +∈  
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This is in agreement with Eq. (6) for 1a b= = , which is the Fibonacci sequence. The Jacobsthal 
numbers are also of this type, with 1,  2a b= = . 

The Lucas numbers, i.e.,  

 0 1 1 22, 1, for 2n n nf f f f f n− −= = = + ≥  (9) 

also have a well-known Binet solution that is given by 
 
 ( )1 nn n n

nL ϕ ψ ϕ ϕ= + = + −  (10) 

where ϕ  and ψ  are as given in Eq. (6). We next considered generalized Lucas numbers given 
by 

 0 1 1 22, , for 2n n nf f a f a f b f n− −= = = + ≥  (11) 

Following Maynard’s analysis, we found that 
 
 n n

nf α β= +  (12) 

where α and β are as given in Eq. (8). The Jacobsthal-Lucas numbers are of this type, again, with 
1,  2a b= = . We verified Eq. (12) by direct comparison with the recursion relation and by using 

RSolve in MATHEMATICA®; the solutions are all in agreement. 

The results of Eqs. (10) and (12) are in agreement with those of Kappraff and Adamson 2004, for 
which 1.b =  In that case, we always have 1β α= − . And of course, when 1a = , α ϕ= . 

We can now address the question of self-similarity. It comes down to this: for n sufficiently 
large, one or other of the terms nα  or nβ  will dominate and the Binet function will devolve into 

a logarithmic spiral (for example, lnn n aeα = ), which is clearly self-similar. Figure 6 shows an 
example of self-similarity for the crab-claw curve (Fibonacci numbers from [–n:n]); on the left, n 
= 16 and on the right, n = 32. Notice the ~2200-fold difference in the scale of these figures. The 
lower panels show details of the smaller-n region (~250-fold zoom); these demonstrate that the 
self-similarity does not extend to the lower n-values. 

Now, of course, the Binet functions can be analytically continued into the entire complex plane. 
But that is subject of another article. Stay tuned. 
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Figure 6: Crab-claw spiral similarity demonstration. Top panels show full figure for 16 and 32 terms on the 

left and right, respectively. Lower panels show smaller-n region, where self-similarity breaks down. 

 

Summary and conclusions 

We have demonstrated both a rational “step-and-arc” algorithm and a closed-form analytic 
solution for the Fibonacci spiral (good riddance to graph paper). The concept was extended to an 
entire class of pseudospirals based on arbitrary real number sequences. We have also found a 
Binet-type formula for generalized Lucas numbers. It is not known if this has been done 
previously since there is a rather large body of literature on generalized Binet functions. 
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Extra Credit 

The sequence of curves used in the animation was based on substituting the circular arc routine 
(see the function ComplexCircularArc in the Appendix) by one which yields a concave or 
convex rounded rectangular arc. The function is given here: 

function z=ComplexRoundedRect(R,z0,Dheta,p,npts) 
% calculate a quasi-rectangular arc of power p, radius R at z=z0 from  
% Dheta=[Dheta(1) Dheta(2)] using npts points in the complex plane; 
% this program has been rewritten ito degrees to avoid problems with 
% cos(pi/2) and sin(pi) raised to small powers 
% Cye H. Waldman, 2013 
  
Dheta=linspace(Dheta(1),Dheta(2),npts)'; 
x=R*sign(cosd(Dheta)).*(abs(cosd(Dheta))).^p+real(z0); 
y=R*sign(sind(Dheta)).*(abs(sind(Dheta))).^p+imag(z0); 
z=complex(x,y); 
  
return 
 

The parameter p can basically vary from zero to infinity. There are a few noteworthy things to 
mention about this code. Consider a full circle, if we let p =2, the result is a square inscribed in 
the circle at a 45º angle. For values of p < 2, the square bulges outward (convex) until at p = 0 
you have the circle inscribed in a normal square. For values of p > 2, the square bulges inward 
(concave) and tends toward a plus sign as p → ∞ . 

The code was written in (x,y) coordinates because we cannot express cos sinp pz iθ θ= +  very 
conveniently in the complex plane. Moreover, we have to resort to the Matlab functions cosd 
and sind (the degrees equivalent of cos and sin) in order to avoid the numerical round-off errors 
that accrue with ( )cos 2π  and ( )sin π . For example, in Matlab, ( ).01cos 2 0.6884π = , while 

( ).01cosd 90 0= , as it should be. In addition,  note that you don’t want to exponentiate negative 

values, hence cos p θ  becomes ( )sign cos cos pθ θ⋅ , and so on.  

These are the curves that compose the second animation. 
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Gallery 
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Appendix: Source code for Pseudospiral 

function Pseudospiral 
% this function computes random or prescribed pseudospirals and compares the 
% solutions from step-and-arc, direct numerical simulation, and closed-form 
% analytic methods 
% Copyright 2013, Cye H. Waldman 
rot=pi/2;       % angular rotation for each arc 
z0=0+0i;        % starting point 
Theta=[0 rot];  % initial theta range 
npts =1001;     % number of points per circular arc 
  
% VARIOUS SEQUENCES PREVIOUSLT TRIED 
UnsortedRand=-5+10*rand(20,1); 
SortedRand=sort(-5+10*rand(20,1)); 
Padovan=[1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151,200,265]'
; 
Juggler3=[3, 5, 11, 36, 6, 2, 1]'; 
Juggler9=[9, 27, 140, 11, 36, 6, 2, 1]'; 
Fractal=[1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6]'; 
Golom=[1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,9,... 
    10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12]'; 
LazyCaterer=[1,2,4,7,11,16,22,29,37,46,56,67,79,92,106,121,137,154,172
,191,211]'; 
Jacobsthal=[0,1,1,3,5,11,21,43,85,171,341,683,... 
    1365,2731,5461,10923,21845,43691,87381,174763,349525]'; 
JacobsthalLucas=[2,1,5,7,17,31,65,127,257,511,1025,... 
    2047,4097,8191,16385,32767,65537,131071,262145,524287,1048577]'; 
Pascal5=[1 5 10 10 5 1]'; 
Pascal6=[1 6 15 20 15 6 1]'; 
Pascal7=[1 7 21 35 35 21 7 1]'; 
Fibonacci=[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,41
81,6765]'; 
  
% CHOOSE YOUR SEQUENCE AND NUMBER OF TERMS, OR ADD YOUR OWN 
n=20; 
Sequence=Fibonacci(1:n)'; 
  
% STEP-AND-ARC 
zstep=[];            
for k=1:n 
    r=Sequence(k); 
    c4th=ComplexCircularArc(r,z0,Theta,npts); 
    zstep=[zstep;c4th(2:end)]; 
    if k<n 
        rnext=Sequence(k+1); 
        Theta=Theta+rot; 
        z0=zstep(end)-rnext*exp(i*Theta(1)); 
    else 
        zstep=[zstep;c4th(end)]; 
    end 
end 
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% DIRECT NUMERICAL SIMULATION 
theta=linspace(0,n*rot,n*(npts-1)+1)'; 
dtheta=theta(2)-theta(1); 
rho=Sequence; % must be row vector 
[r,c]=size(rho); 
if r>c; rho=rho.'; end 
rho=repmat(rho,(npts-1),1); 
rho=reshape(rho,n*(npts-1),1); 
rho=[rho;rho(end)]; 
I=find(diff(rho)~=0); 
for k=1:length(I) 
    rho(I(k)+1)=(rho(I(k))+rho(I(k)+2))/2; 
end 
  
zdns=exp(i*pi/2)*cumtrapz(exp(i*theta).*rho)*dtheta; 
zdns=zdns+max(real(zstep))-max(real(zdns)); % align w/ step-arc soln 
  
% CLOSED-FORM ANALYTIC SOLUTION 
zanal=Sequence(1); 
for k=1:n 
    try 
        delSequence=Sequence(k)-Sequence(k-1); 
    catch 
        delSequence=Sequence(k); 
    end 
    zanal=zanal-delSequence*... 
        (exp(i*(k-1)*rot)-exp(i*theta)).*heaviside(theta-(k-1)*rot); 
end 
  
figure 
hold on 
plot(zstep,'r') 
plot(zdns,'Color',[0 .5 0]) 
plot(zanal,'b','LineWidth',1) 
box 
axis equal 
  
return 
  
  
function z=ComplexCircularArc(R,z0,Theta,npts) 
% calculate a circluar arc of radius R at z=z0 from Theta=[Theta(1) 
% Theta(2)] using npts points in the complex plane 
  
theta=linspace(Theta(1),Theta(2),npts)'; 
z=R*exp(i*theta)+z0; 
  
return 
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