OidEG.m

Pre-Computed Examples and Explanations

for use with the MAIN "Maple" worksheet : Oid.mws

( both files must be in the same folder )

chabot - 8/98

   

   

Hyperlinks - to pre-computed examples, etc.          Create YOUR OWN   

Definitions with Explanations :

         Cycloid       Trochoid       Epicycloid       Hypocycloid      Epitrochoid      Hypotrochoid   

 

Animated Examples :   click on the " o " , then on the figure, and use the animation controls.

         cycloid       trochoid       epicycloid       hypocycloid       epitrochoid       hypotrochoid 

 

You can easily create variations of the Epi.... and Hypo.... examples in the MAIN worksheet.

   

    RETURN to MAIN  

   

   

Cycloids  vs  Trochoids  -

A circle of radius "a" rolls along the x-axis.  "P" is the point on this circle of initial contact.  As the circle rolls, the point "P" traces out a curve.  This is a cycloid .  When the point "P" is moved to a distance "b" from the center of the rolling circle the curve traced out is a trochoid .  The effects are quite different for  b < a  and  b > a.  So, a cycloid is just a trochoid with  b = a.  For simplicity,  a = 1  in the animated examples, and "P" starts at the origin.

The general parametric equations for a cycloid  are :   x = at - a sin(t) ,  y = a - a cos(t)

o

[Maple Plot]

[t-sin(t), 1-cos(t), t = 0 .. 5*Pi]

  

   

    RETURN to MAIN    Go To TOP     

   

   

The general parametric equations for a trochoid are :   x = at - b sin(t) ,  y = a - b cos(t)

o 

[Maple Plot]

[t-2/3*sin(t), 1-2/3*cos(t), t = 0 .. 5*Pi]

o  

[Maple Plot]

[t-3/2*sin(t), 1-3/2*cos(t), t = 0 .. 5*Pi]

   RETURN to MAIN    Go To TOP     

   

Epicycloids -

A circle of radius "b" rolls on the outside of a circle of radius "a".  "P" is the point on the b-circle of initial contact with the a-circle.  As the b-circle rolls the point "P" traces out a curve in the plane.  This is an epicycloid  .  There will be "a/b" returns contacts of "P" with the a-circle as the b-circle rolls.  So, when  a/b = N  is an integer, we get a closed figure with  N  vertices (in one traversal of the a-circle).  The shape of the epicycloid is totally determined by the single number  N.

The general parametric form of an epicycloid  is :  

[(a+b)*cos(t)-b*cos((a+b)*t/b), (a+b)*sin(t)-b*sin((a+b)*t/b), t = 0 .. 2*Pi]

 

o  

[Maple Plot]

[6/5*cos(t)-1/5*cos(6*t), 6/5*sin(t)-1/5*sin(6*t), t = 0 .. 2*Pi]

    RETURN to MAIN    Go To TOP     

   

Hypocycloids  -

A circle of radius "b" rolls on the inside of a circle of radius "a".  "P" is the point on the b-circle of initial contact with the a-circle.  As the b-circle rolls the point "P" traces out a curve in the plane.  This is a hypocycloid .  There will be "a/b" returns contacts of "P" with the a-circle as the b-circle rolls.   So, when  a/b = N  is an integer, we get a closed figure with  N  vertices (in one traversal of the a-circle).  The shape of the hypocycloid is totally determined by the single number  N.

The general parametric form of a hypocycloid  is :

[(a-b)*cos(t)+b*cos((a-b)*t/b), (a-b)*sin(t)-b*sin((a-b)*t/b), t = 0 .. 2*Pi]

o  

[Maple Plot]

[3/4*cos(t)+1/4*cos(3*t), 3/4*sin(t)-1/4*sin(3*t), t = 0 .. 2*Pi]

    RETURN to MAIN    Go To TOP     

   

Epitrochoids  -

A circle of radius "b" rotates (counter-clockwise) while its center goes around a circle of radius "a".  The b-circle spins "c" times in a full traversal of the a-circle.  A point "P" on the b-circle traces out a curve in the plane.  This is an epitrochoid .  There will be  N = c - 1  "vertices".  When  a/b = c  the curve is an epicycloid.  If  b < a/c ( = a/(N+1) ) the effect is similar to a trochoid with  b < a.  The case  b > a/c  produces loops as in a trochoid with  b > a.  The shape of the epitrochoid depends on the numbers  N  and  b/a.  Most epitrochoids have  b/a < 1,  but interesting curves can be produced with larger values.  Go back to MAIN and experiment - it's easy!

The general parametric form of an epitrochoid  is :

[a*cos(t)-b*cos(c*t), a*sin(t)-b*sin(c*t), t = 0 .. 2*Pi]

 

o  

[Maple Plot]

[cos(t)-1/2*cos(7*t), sin(t)-1/2*sin(7*t), t = 0 .. 2*Pi]

    RETURN to MAIN    Go To TOP     

   

Hypotrochoids  -

A circle of radius "b" rotates (clockwise) while its center goes around a circle of radius "a".  The b-circle spins "c" times in a full traversal of the a-circle.  A point "P" on the b-circle traces out a curve in the plane.  This is a hypotrochoid .  There will be  N = c + 1  "vertices".  When  a/b = c  the curve is an hypocycloid.  If  b < a/c ( = a/(N-1) )  the effect is similar to a trochoid with  b < a.  The case  b > a/c  produces loops as in a trochoid with  b > a.  The shape of the hypotrochoid depends on the number  N  and  b/a.  Most hypotrochoids have  b/a < 1,  but interesting curves can be produced with larger values.  Go back to MAIN and experiment - it's easy!

The general parametric form of a hypotrochoid  is :  

[a*cos(t)+b*cos(c*t), a*sin(t)-b*sin(c*t), t = 0 .. 2*Pi]

o  

[Maple Plot]

[cos(t)+1/3*cos(7*t), sin(t)-1/3*sin(7*t), t = 0 .. 2*Pi]

    RETURN to MAIN    Go To TOP